Influenced by a warm and humid climate, the permafrost on the Qinghai-Tibet Plateau is undergoing significant degradation, leading to the occurrence of extensive thermokarst landforms. Among the most typical landforms in permafrost areas is thaw slump. This study, based on three periods of data from keyhole images of 1968-1970, the fractional images of 2006-2009 and the Gaofen (GF) images of 2018-2019, combined with field surveys for validation, investigates the distribution characteristics and spatiotemporal variation trends of thaw slumps in the Hoh Xil area and evaluates the susceptibility to thaw slumping in this area. The results from 1968 to 2019 indicate a threefold increase in the number and a twofold increase in total area of thaw slumps. Approximately 70% of the thaw slumps had areas less than 2 x 104 m2. When divided into a grid of 3 km x 3 km, about 1.3% (128 grids) of the Hoh Xil region experienced thaw slumping from 1968 to 1970, while 4.4% (420 grids) showed such occurrences from 2018 to 2019. According to the simulation results obtained using the informativeness method, the area classified as very highly susceptible to thaw slumping covers approximately 26% of the Hoh Xil area, while the highly susceptible area covers about 36%. In the Hoh Xil, 61% of the thaw slump areas had an annual warming rate ranging from 0.18 to 0.25 degrees C/10a, with 70% of the thaw slump areas experiencing a precipitation increase rate exceeding 12 mm/10a. Future assessments of thaw slump development suggest a possible minimum of 41 and a maximum of 405 thaw slumps occurrences annually in the Hoh Xil region. Under rapidly changing climatic conditions, apart from environmental risks, there also exist substantial potential risks associated with thaw slumping, such as the triggering of large-scale landslides and debris flows. Therefore, it is imperative to conduct simulated assessments of thaw slumping throughout the entire plateau to address regional risks in the future.
On 25 June 2020, a glacial lake outburst flood (GLOF) occurred in Jinwuco, Nidou Zangbo, and southeast Tibet, causing catastrophic damage to multiple infrastructures such as roads, bridges, and farmlands in the surrounding and downstream areas. Due to the lack of long-term monitoring of glacial lake and glacier changes in the region and the surrounding surface, the spatial and temporal evolutionary characteristics and triggering factors of the disaster still need to be determined. Here, we combine multi-temporal optical remote sensing image interpretation, surface deformation monitoring with synthetic aperture radar (SAR)/InSAR, meteorological observation data, and corresponding soil moisture change information to systematically analyze the spatial and temporal evolution characteristics and triggering factors of this GLOF disaster. Optical images taken between 1987 and 2020 indicate that the glacial lake's initial area of 0.39 km(2) quickly grew to 0.56 km(2), then plummeted to 0.26 km(2) after the catastrophe. Meanwhile, we found obvious signs of slippage beside the lateral moraine at the junction of the glacier's terminus and the glacial lake. The pixel offset tracking (POT) results based on SAR images acquired before and after the disaster reveal that the western lateral moraine underwent a 40 m line of sight (LOS) deformation. The small baseline subset InSAR (SBAS-InSAR) results from 2017 to 2021 show that the cumulative deformation of the slope around the lateral moraine increased in the rainy season before the disaster, with a maximum cumulative deformation of -52 mm in 120 days and gradually stabilized after the disaster. However, there are three long-term deformation areas on the slope above it, showing an increasing trend after the disaster, with cumulative deformation exceeding -30 mm during the monitoring period. The lateral moraine collapse occurred in a warm climate with continuous and intense precipitation, and the low backscatter intensity prior to the slide suggests that the soil was very moist. Intense rainfall is thought to be the catalyst for lateral moraine collapse, whereas the lateral moraine falling into the glacier lake is the direct cause of the GLOF. This study shows that the joint active-passive remote sensing technique can accurately obtain the spatial and temporal evolution characteristics and triggering factors of GLOF. It is helpful to understand the GLOF event caused by the slide of lateral moraine more comprehensively, which is essential for further work related to glacial lake hazard assessment.