共检索到 9

Drought stress is becoming a structural phenomenon in cropping systems challenged by climate change and soil fertility degradation. A balanced fertilization strategy based on nitrogen, phosphorus, and potassium as well as on silicon supplementation was tested as an efficient practice to improve maize tolerance to short-term drought stress. Three fertilization strategies (control: treatment with zero NPK fertilizer application; NPK: granular NPK fertilizer, and NPK + Si: granular NPK fertilizer enriched with 5% silicon) were evaluated under three irrigation regimes simulating three probable water deficit levels in the Mediterranean climate (I1, well-watered conditions: 80% of soil field capacity; I2, medium drought stress: 60% of soil field capacity; and I3, severe drought stress: 30% of soil field capacity). Drought stress was applied at V10 growth stage of maize and maintained for 15 days, then plants were rewatered according to the optimal irrigation regime. Results showed that medium and severe drought stress down-regulated maize plant growth and yield, especially under nutrient deficient conditions (control). Plants amended with NPK and NPK + Si recorded higher chlorophyll a pigment content (+ 22 to + 64%), stomatal conductance (+ 6 to 24%), and leaf relative water content (+ 7 to 23%) than those of the control, depending on the drought stress level. Silicon supplementation attenuated the down-regulation effects of drought stress on maize photosynthesis and biomass accumulation by improving stomatal conductance and electron transfer efficiency between PSII and PSI. Silicon supply improved the performance index for energy conservation from photons absorbed by PSII to the reduction of intersystem electron acceptors (PIabs) and reduced the dissipation energy flux (DIo/RC), responsible for the protection of PSII from photo-damage under drought stress, which resulted in significant enhancement of maize photosynthesis recovery and grain yield (+ 59 to 69%). Findings from the present study demonstrate that granular NPK-fertilizer fortified with silicon could be an efficient strategy to increase maize photosynthesis performance, plant growth, and productivity under short-term drought stress conditions.

期刊论文 2025-05-27 DOI: 10.1007/s42729-025-02483-z ISSN: 0718-9508

Evapotranspiration (ET) is a critical component of the soil-plant-atmosphere continuum, significantly influencing the water and energy balance of ecosystems. However, existing studies on ET have primarily focused on the growing season or specific years, with limited long-term analyses spanning decades. This study aims to analyse the components of ET within the alpine ecosystem of the Heihe River Basin, specifically investigating the dynamics of vegetation transpiration (T) and soil evaporation (Ev). Utilizing the SPAC model and integrating meteorological observations and eddy covariance data from 2013 to 2022, we investigate the impact of solar radiation and vegetation dynamics on ET and its partitioning (T/ET). The agreement between measured and simulated energy fluxes (net radiation and latent energy flux) and soil temperature underscores the validity of the model's performance. Additionally, a comparison employing the underlying water use efficiency method reveals consistent T/ET values during the growing season, further confirming the model's accuracy. Results indicate that the annual average T/ET during the 10-year study period is 0.41 +/- 0.03, close to the global average but lower than in warmer, humid regions. Seasonal analysis reveals a significant increase in T/ET during the growing season (April to October), particularly in May and June, coinciding with the thawing of permafrost and increased soil moisture. In addition, the study finds that the leaf area index and canopy stomatal conductance exhibit a logarithmic relationship with T/ET, whereas soil temperature and downward longwave radiation show an exponential relationship with T/ET. This study highlights the importance of understanding the stomatal conductance dynamics and their controls of transpiration process within alpine ecosystems. By providing key insights into the hydrological processes of these environments, it offers guidance for adapting to climate change impacts.

期刊论文 2025-03-01 DOI: 10.1002/eco.70029 ISSN: 1936-0584

Maize (Zea mays L.) is an important cereal crop grown in arid and semiarid regions of the world. During the reproductive phase, it is more frequently exposed to drought stress, resulting in lower grain yield due to oxidative damage. Selenium and zinc oxide nanoparticles possess inherent antioxidant properties that can alleviate drought-induced oxidative stress by the catalytic scavenging of reactive oxygen species, thereby protecting maize photosynthesis and grain yield. However, the effect of zinc selenide quantum dots (ZnSe QDs) under drought stress was not been quantified. Hence, the aim of this study was to quantify the (i) toxicity potential of ZnSe QDs and (ii) drought mitigation potential of ZnSe QDs by assessing the transpiration rate, photosynthetic rate, oxidant production, antioxidant enzyme activity and seed yield of maize under limited soil moisture levels. Toxicity experiments were carried out with 0 mg L-1 to 500 mg L-1 of ZnSe QDs on earthworms and azolla. The results showed that up to 20 mg L-1, the growth rates of earthworms and azolla were not affected. The dry-down experiment was conducted with three treatments: foliar spray of (i) water, (ii) ZnSe QDs (20 mg L-1), and (iii) combined zinc sulfate (10 mg L-1) and sodium selenate (10 mg L-1). ZnSe or Se applications under drying soil reduced the transpiration rate compared to water spray by partially closing the stomata. ZnSe application at 20 mg L-1 at the tasselling stage significantly increased the photosynthetic rate (25%) by increasing catalase (98%) and peroxidase (85%) enzyme activity and decreased the hydrogen peroxide (23%) content compared to water spray, indicating that premature leaf senescence was delayed under rainfed conditions. ZnSe spray increased seed yield (26%) over water spray by increasing the number of seeds cob-1 (42%). The study concluded that foliar application of ZnSe (20 mg L-1) could decrease drought-induced effects in maize.

期刊论文 2024-12-03 DOI: 10.3389/fpls.2024.1478654 ISSN: 1664-462X

Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree species Populusfremontii were studied in a controlled common garden during a record summer heatwave-where air temperature exceeded 48 degrees C. When water was not limiting, all genotypes cooled leaves 2 to 5 degrees C below air temperatures. Homeothermic cooling was disrupted for weeks following a 72- h reduction in soil water, resulting in leaf temperatures rising 3 degrees C above air temperature and 1.3 degrees C above leaf thresholds for physiological damage, despite the water stress having little effect on leaf water potentials. Tradeoffs between leaf thermal safety and hydraulic safety emerged but, regardless of water use strategy, all genotypes experienced significant leaf mortality following water stress. Genotypes from warmer climates showed greater leaf cooling and less leaf mortality after water stress in comparison with genotypes from cooler climates. These results illustrate how brief soil water limitation disrupts leaf thermal regulation and potentially compromises plant survival during extreme heatwaves, thus providing insight into future scenarios in which ecosystems will be challenged with extreme heat and unreliable soil water access.

期刊论文 2024-10-22 DOI: 10.1073/pnas.2408583121 ISSN: 0027-8424

Key messageThe high-wood-density species displays greater water limitation tolerance, as it maintains leaf transpiration under drought conditions.AbstractThe relationship between environmental conditions and plant hydraulic safety is essential to understand species' strategies to minimize damage to their hydraulic structure yet maintain function. In the Brazilian semi-arid, the relationships between rainfall seasonality, hydraulic conductivity, wood density, stomatal conductance, and phenology in different species still needs to be clarified. To better understand these relationships, we selected two deciduous trees species with contrasting wood density: (1) Commiphora leptophloeos (Mart.) J.B. Gillett (low wood density) and (2) Cenostigma pyramidale (Tul.) E. Gagnon & G. P. Lewis (high wood density) from the Caatinga dry forest of northeast Brazil. We tracked monthly measurements of whole-tree hydraulic conductivity, leaf stomatal conductance, leaf transpiration rate, xylem water potential, and phenology. We found that the low-wood-density species had a higher whole-tree hydraulic conductivity and an early leaf flush and fall. In addition, lower leaf transpiration rate and higher water storage capacity maintained high xylem water potential and stomatal conductance values, especially in the rainy season. On the other hand, the high-wood-density species had a lower whole-tree hydraulic conductivity and higher leaf transpiration rate, even during the dry season. These results point to the divergent hydraulic strategies employed by each species, further suggesting opposing hydraulic safety pathways during drought.

期刊论文 2024-06-01 DOI: 10.1007/s00468-024-02506-9 ISSN: 0931-1890

Penstemon, with more than 250 species native to North America, holds signi fi cant aesthetic and ecological value in Utah, supporting diverse pollinators. Despite their signi fi cance, the survival of penstemon is threatened by challenges such as habitat loss, climate change, and Utah ' s naturally high soil salinity. To address these challenges and understand their adaptability, this study evaluated the salt tolerance of two penstemon species [ Penstemon davidsonii (Davidson ' s penstemon) and Penstemon heterophyllus (foothill penstemon)] under controlled greenhouse conditions. The aim was to develop baseline information for nursery production and landscape use that utilize reclaimed water for irrigation. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.0 dSm - 1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dSm - 1 for 8 weeks. Half of the plants were harvested after four irrigation events, and the remaining plants were harvested after eight irrigation events. At harvest, visual rating (0 = dead and 5 = excellent without foliage salt damage), plant width, number of shoots, leaf area, shoot dry weight, leaf greenness [Soil Plant Analysis Development (SPAD)], stomatal conductance, and canopy temperature were collected to assess the impact of salinity stress. In both species, salt damage was dependent on the salinity levels and length of exposure. After four irrigation events, both species exhibited foliage damage that increased in severity with rising EC. The most severe damage was observed in plants receiving saline solution at an EC of 10.0 dSm - 1 . After eight irrigation events, P. davidsonii exposed to a saline solution with an EC of 10.0 dSm - 1 received a visual rating of 0, whereas P. heterophyllus had a visual rating of 0.4. Both species exhibited salinity -induced effects, with variations observed in the speci fi c parameters and the degree of response. Penstemon davidsonii exhibited signi fi - cant salinity stress, as indicated by reduced leaf area, shoot dry weight, SPAD reading, and stomatal conductance with increasing EC of the saline solution. In addition, in both species, at both harvests, canopy temperatures increased either linearly or quadratically by 8% to 36% as the EC levels of the saline solution increased. These results indicate that P. davidsonii was more sensitive to salinity stress than P. heterophyllus .

期刊论文 2024-05-01 DOI: 10.21273/HORTSCI17454-23 ISSN: 0018-5345

Russian boreal forests represent the largest forested region on Earth and comprise one-fifth of the world's forest cover. The two most common genera in Siberia are Larix and Pinus, which together cover more than 80% of the region's forested area. One observable ongoing effect of climate warming is that natural populations of Siberian larch are gradually being replaced by Scots pine. The present work focuses on comparing effects of environmental variables on sap flow density in two even-aged stands of Larix sibirica and Pinus sylvestris. While the two study stands were identical in age (49 years) with similar basal areas and leaf area index, they exhibited very different transpiration rates and response mechanisms to environmental signals. Stand water use was higher for larch than it was for pine, even though transpiration for deciduous larch trees occurred over shorter time periods. The cumulative annual transpiration of the larch stand was 284 +/- 4 mm measured over two consecutive growing seasons (2015-2016), while for pine this was 20% lower. Seasonal transpiration accounted for 50% and 40% of the reference evapotranspiration and 91% and 67% of growing season precipitation for larch and pine, respectively. Water stored in soil provided an important source of water for transpiration, observed as roughly 100 mm, which was then replenished from snowmelt the following spring. The greatest difference between two species related to how well they controlled transpiration, notably in the context of high vapor pressure deficit; under these conditions, pine maintained greater control over transpiration than larch. For all soil moisture levels measured, larch transpired more water than pine. Importantly, our results point to potential future effects of global warming, most notably an increasing decline of larch forests, changes in the ratio between latent and sensitive heat fluxes, and significant modifications in ecosystem water availability.

期刊论文 2019-06-15 DOI: 10.1016/j.agrformet.2019.02.038 ISSN: 0168-1923

The effect of thawing permafrost on boreal ecosystem water cycling represents a significant knowledge gap of how climate change will affect northern landscapes. Evapotranspiration, particularly transpiration, may be changing in response to changes in permafrost conditions, vegetation, and climate. This study focuses on the effect of permafrost thaw on boreal plant transpiration over two summers with contrasting weather conditions. We quantified the response of stomatal conductance (gs), from which transpiration was calculated, of deciduous and evergreen plants to soil environmental factors that permafrost thaw affects: soil water content (S), depth of seasonal thaw (D), and soil temperature (T). We found that gs was least sensitive to T compared with S and D at both sites and across both years. At the thawing site, gs was more sensitive to S in a dry year (2009) and to D in a wet year (2010). In the wet year, S of similar to 50cm represented a threshold wherein the sensitivity of gs to T and D switched between positive (S50cm). However, the sensitivities to T and D were negative when S was consistently less than 50cm in the dry year. This is one of the first studies to explore the effect of permafrost thaw on boreal plant gs and transpiration, and our model predicted higher transpiration rates from deciduous plants located on thawing permafrost. Copyright (c) 2013 John Wiley & Sons, Ltd.

期刊论文 2014-06-01 DOI: 10.1002/eco.1423 ISSN: 1936-0584

Continuous observation over the last decade has revealed evidence of abrupt land surface moistening as well as rapid soil warming within the active layer and upper part of permafrost within the central Lena River basin in eastern Siberia. The present study examined the relationship between permafrost degradation and ecohydrological change in this region. Increases in the depth of the active layer recorded since the winter of 2004 resulting from increases in moisture saturation within the soil have resulted in thawing the upper permafrost causing thermokarst subsidence, which has negatively impacted the growth of boreal (larch) forests in the region. According to multi-year sap flow measurements taken between 2006 and 2009, transpiration from larch trees (Larix cajanderi Mayr.) was significantly reduced as a result of the region's concave micro-topography, which, in conjunction with the deepening and moistening of the active layer, created perennially waterlogged conditions that left mature trees withered and dead. Several trees with reduced amounts of foliage showed a remarkable reduction in seasonal average canopy stomatal conductance during the 2009 growing season. The reduction ratio of canopy stomatal conductance within emergent trees of heights greater than 15m between 2006 and 2009 had a significant positive correlation with the increase in thickness of the active layer over that same period. These findings indicated that wetting trends in a permafrost region caused by arctic climate change may lead to unexpected ecohydrological responses with respect to permafrost degradation in eastern Siberia. Copyright (c) 2013 John Wiley & Sons, Ltd.

期刊论文 2014-04-01 DOI: 10.1002/eco.1366 ISSN: 1936-0584
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-9条  共9条,1页