This study investigates the strain-rate-dependent mechanical properties of unsaturated red clay under varying temperatures and matric suction conditions through triaxial shear tests on red clay fill materials from the Sichuan-Tibet Railway region. The tests were conducted with multiple shear strain rates, complemented by advanced microstructural analysis techniques such as mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM), to examine the evolution of pore structure. The results indicate that high matric suction significantly reduces the rate-dependency of strength in red clay fill materials, whereas temperature has a relatively smaller effect. As matric suction increases, the strain-rate parameter decreases across different temperatures, with a diminishing rate effect observed at higher suction levels. Compared to temperature, strain rate has a more pronounced influence on failure time. An increase in strain rate leads to a significant reduction in failure time. At low strain rates, failure time exhibits substantial variability, while at high strain rates, the effects of temperature and matric suction on failure time become less significant. Under high-temperature conditions, the strength of red clay is enhanced, and failure time is delayed. These findings provide critical theoretical support for controlling settlement deformation and predicting failure times of subgrade fill materials under complex climatic conditions, offering valuable insights for engineering applications.
This study investigates the mechanical properties and damage processes of cement-consolidated soils with Pisha sandstone geopolymer under impact loading using the Hopkinson lever impact test. The mechanical properties of cement-cured soils containing Pisha sandstone geopolymer were examined at various strain rates. The relationship between strain rate and strength of the geopolymer-cemented soil was established. As the strain rate increased, the coefficient of power increase for the Pisha sandstone geopolymer cement-cured soil initially rose before gradually stabilizing. The pore structure of the crushed specimens was analyzed using Mercury intrusion porosimetry. Based on the observed pore changes under impact loading, the pore intervals of the geopolymer-cemented soil were defined. A fitting model linking strain rate and porosity was developed. As strain rate increased, the porosity of the specimens first increased and then decreased, with larger internal pores gradually transforming into smaller ones. The highest porosity was observed at a strain rate of 64.67 s- 1. Crushing characteristics of the cement-cured soils under impact loading were determined through sieving statistics of the crushed particles. The average particle size of the fragments decreased as the strain rate increased. The fractal dimension initially decreased and then increased with the rise in strain rate, reaching its lowest value at a strain rate of 64.67 s- 1. Based on the dynamic mechanical properties, microscopic porosity, and fracture characteristics, the critical strain rate and damage form for cement-consolidated soils with Pisha sandstone geopolymer under impact loading were determined. This study offers valuable insights for the practical application of Pisha sandstone geopolymer cement-cured soils in engineering.
Due to economic and demographic growth, there is a rising demand for land reclamation in coastal cities of East and Southeast Asia. Marine clays typically play a critical role in these projects, and the deformation characteristics of marine clays become a crucial problem in terms of the quality of the subsoil conditions. The long-term loading behavior of marine clays has been studied by many researchers. However, relatively few studies have been done on the unloading behavior of these clays after preloading; and thus, the strain rate dependency on the unloading behavior of marine clays remains unclear. The aim of this study was to accumulate experimental data on the unloading behavior of marine clays and to develop a strain rate-based model for improving the accuracy of the predictions of the swelling behavior of marine clays during unloading. The authors conducted a series of constant rate of strain (CRS) consolidation tests from loading to unloading, and long-term unloading oedometer tests on Ariake clay, which is a well-known sensitive marine clay, to observe the swelling behavior during in unloading. The preloading time, corresponding to different strain rates at the end of preloading, was controlled to elucidate the effect of the stress history. Moreover, instead of parameter r ' p (preconsolidation pressure) for the normal consolidation visco-plastic behavior, the authors developed and proposed a new visco-plastic model by introducing the concept of a plastic rebound boundary and a new parameter R for swelling behavior during unloading. Parameter R represents the normalized distance from the current stress state to the plastic rebound boundary in logarithmic effective consolidation stress. Therefore, the visco-plastic model for the behavior in the loading stage was developed into the swelling visco-plastic behavior in the unloading stage for Ariake clay. Comparing the simulation and test results, the simplified visco-plastic swelling model was found to agree well with the test results. (c) 2025 Published by Elsevier B.V. on behalf of Japanese Geotechnical Society. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
The progression of marine resource exploration into deepwater and ultra-deepwater regions has intensified the requirement for precise quantification of the undrained shear strength of clay. Although diverse in situ testing methodologies-including the vane shear test (VST), cone penetration test (CPT), T-bar penetration test (TPT), and ball penetration test (BPT)-are widely utilized for the assessment of clay strength, systematic discrepancies and correlations between their derived measurements remain inadequately resolved. The aim of this work is to provide a systematic comparison of strength interpretations across different in situ testing methods, with emphasis on identifying method-specific biases under varying soil behaviors. To achieve this, a unified numerical simulation framework was developed to simulate these four prevalent testing techniques, employing large-deformation finite element analysis via the Coupled Eulerian-Lagrangian (CEL) approach. The model integrates critical constitutive behaviors of marine clays, specifically strain softening and strain rate dependency, to replicate in situ shear strength evolution. Rigorous sensitivity analyses confirm the model's robustness. The results indicate that, when the stain rate and softening effects are neglected, the resistance factors from the CPT and VST remain largely insensitive to shear strength variations. However, T-bar and ball penetrometers tend to underestimate strength by up to 15% in high-strength soils due to the incomplete development of a full-flow failure mechanism. As a result, their application in high-strength soils is not recommended. With both the strain rate and softening effects considered, the interpreted strength value Sut from the CPT increases by 13.5% compared to cases excluding these effects, while other methods exhibit marginal decreases of 4-5%. The isolated analysis of strain softening reveals that, under identical softening parameters, the CPT demonstrates the least sensitivity to strain softening among the four methods examined, with the factor reduction ratio Ns/N0 ranging from 0.76 to 1.00, while the other three methods range from 0.65 to 0.88. The results indicate that the CPT is well suited for strength testing in soils exhibiting pronounced softening behavior, as it reduces the influence of strain softening on the measured results. These findings provide critical insights into method-specific biases in undrained shear strength assessments, supporting a more reliable interpretation of in situ test data for deepwater geotechnical applications.
Accurate characterization of soil dynamic response is paramount for geotechnical and protective engineering. However, the impact properties of unsaturated cohesive soil have not been well characterized due to lack of sufficient research. For this purpose, impact tests using the Split Hopkinson Pressure Bar (SHPB) were elaborately designed to investigate the dynamic stress-strain response of unsaturated clay with strain rates of 204 similar to 590 s(-1). As the strain rate increased up to 500 s(-1), a lock-up behavior was observed in the plastic flow stage, which can be explained as the breakage and rearrangement of soil gains under a high level of stress. Further, the strain rate dependency of the dynamic strength was quantitatively characterized by the Cowper Symonds (CS) model and the CS coefficients were determined to be the intercept of 55 and slope of 0.8 in the double logarithmic scale of Dynamic Increase Factor (DIF) and strain rate space. Furthermore, the SHPB test was reproduced using a modified Material Particle Method (MPM), which involves an improved dynamic constitutive model for unsaturated soil considering the strain rate effect. The simulated stress-strain curves basically agree with the experimental results, indicating the feasibility of MPM for investigating the dynamic properties of unsaturated soil under SHPB impact loading.
In previous train operations, traffic loads were typically considered continuous, disregarding the intermittent effects of successive trains on subgrade loess. To investigate the cumulative plastic strain behavior and critical dynamic stress of subgrade loess under intermittent train loads, a series of dynamic triaxial tests were conducted considering factors such as cyclic stress ratio, confining pressure, and frequency. The deformation characteristics of subgrade soil under different stress levels were analyzed, and the dynamic behavior of specimens was categorized based on the development trends of strain rate and cumulative plastic strain. Then the critical dynamic stress levels for plastic shakedown and plastic creep states were determined. The results indicate that intermittent effects suppress the development of cumulative plastic strain and excess pore water pressure in the soil. The more cycles of the unloading-drainage stage the soil undergoes, the stronger its resistance to failure. Under intermittent loads, cumulative plastic strain increases with higher cyclic stress ratios and frequencies. When the cyclic stress ratio is constant, the increase in confining pressure enhances soil stiffness, but this increase is insufficient to counteract the strain induced by greater dynamic stress amplitude, resulting in increased cumulative strain. Combining cumulative plastic strain and plastic strain rate, a classification standard for the deformation behavior of subgrade loess under intermittent loading conditions was established, and the critical dynamic stress was identified. The critical dynamic stress increases with higher confining pressure but decreases with frequency. Accordingly, empirical formulas for critical dynamic stress concerning confining pressure and frequency were proposed. These findings are crucial for understanding the mechanism of intermittent train load effects and analyzing subgrade settlement.
Slope stability analysis constitutes a crucial component of the operational procedures involved in open-cast mining. A slope failure adjacent to an active mining site could give rise to severe societal, economic, and safety implications of a grave nature. It is widely recognized that multiple parameters, such as the type of minerals, orientation of joints, precipitation patterns, pore water pressure, cohesive properties, and the angle of internal friction exhibited by the rock masses, exert influence over the stability of a slope. Presently, the design of slopes primarily relies on empirical knowledge gained from practical field experience. The objective of this paper is to employ numerical modelling techniques to analyse a of the slope characterized by a series of terraced benches and diverse layers of soil featuring varying properties. The numerical analysis is performed using FLAC (Fast Lagrangian Analysis of Continua), a software developed by Itasca International. This analysis aims to determine the Factor of Safety, Pore Pressure, Saturation, Stress, Strain Rate, Strain Increment, Velocity Vector, and Displacement Vector. Furthermore, the investigation examines the outcomes obtained during both dry and wet stages. The wet stage encompasses two infiltration scenarios, namely, a prolonged period of light rainfall lasting four months and an intense rainstorm lasting four days. The results also include a reduction in saturation and shear strain rate when the water is prevented from infiltrating the horizontal surfaces of the whole slope.
A new method for measuring internal pore water pressure (PWP) is introduced to determine the critical state line (CSL) in partially frozen sand, investigating the influence of temperature and strain rate on the critical state parameters. A series of consolidated undrained and drained triaxial tests, along with internal PWP measurements, were conducted on both dense and loose specimens under different temperatures and strain rates. Similarly to unfrozen sand, a unique CSL was established for the partially frozen sand at -3 degrees C in both stress (q-p ') and void ratio (e-p ') space. The results show that the critical state friction angle (phi cs ') is not affected by temperature (warmer than -5 degrees C) and strain rate, while the critical state cohesion (ccs ') varies with temperature, strain rate and failure mode. The ccs ' increases with decreasing temperature from 23 degrees C to -3 degrees C and to -10 degrees C, but decreases to zero when the strain rate was reduced from 1%/min to 0.1%/min. In e-p ' space, the slope of CSL could be associated with the dilation of partially frozen sand, which increases with decreasing temperature and increasing strain rate, potentially due to the increased contact area between the pore ice and sand grains.
Although time-dependent deformation of geomaterials underpins slope-failure prediction models, the influence of strain rate on shearing strength and deformation behavior of loess remains unclear. The consolidated undrained (CU) and drained (CD) triaxial testing elucidated the impact of strain rate (0.005-0.3 mm/min) on strength envelopes, deformation moduli, pore pressures, and dilatancy characteristics of unsaturated and quasi-saturated loess. Under drained conditions with a controlled matric suction of 50 kPa, increasing strain rates from 0.005 mm/min to 0.011 mm/min induced decreases in failure deviatoric stress (qf), initial deformation modulus (Ei), and cohesion (c), while friction angles remained unaffected. Specimens displayed initial contractive volumetric strains transitioning to dilation across varying confining pressures. Higher rates diminished contractive volumetric strains and drainage volumes, indicating reduced densification and strength in the shear zone. Under undrained conditions, both unsaturated and quasi-saturated (pore pressure coefficient B = 0.75) loess exhibited deteriorating mechanical properties with increasing rates from 0.03 mm/min to 0.3 mm/min. For unsaturated loess, reduced contractive volumetric strains at higher rates manifested relatively looser structures in the pre- peak stress phase. The strength decrement in quasi-saturated loess arose from elevated excess porewater pressures diminishing effective stresses. Negative porewater pressures emerged in quasi-saturated loess at lower confining pressures and strain rates. Compared to previous studies, the qf and Ei exhibited rate sensitivity below threshold values before attaining minima with marginal subsequent influence. The underlying mechanism mirrors the transition from creep to accelerated deformation phase of landslides. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
An experimental study is made to understand the deformation characteristics and failure mechanism of sands subjected to severe plastic deformation in the ploughing model setup of in-plane orthogonal cutting. The cutting experiments were performed on sands over 3 orders of strain rates. High-speed imaging and concomitant image analysis were performed using the Particle Image Velocimetry algorithm to obtain the whole field velocity measurements of the material flow. The velocity field maps of the near tool tip region demonstrate a sharp change in the motion of sand particles along with the formation of a dead zone. The effective strain rate maps show regions of intense localized plastic deformation- termed shear bands. The inclination angle of these bands evolved periodically with time and showed a decreasing trend due to an increase in the surcharge and effective depth of cut. The morphology and overall characteristics of these mesoscale structures (shear bands) do not change significantly with strain rate. The cutting force signatures were oscillatory and suggested cyclic material softening (dilation)-hardening (compaction) ahead of the tool, which is also reflected in the periodic repositioning of shear bands. The limit equilibrium-based model was adequate to predict the tool-cutting forces well, even with the significant variation in strain rates.