In permafrost regions, vegetation growth is influenced by both climate conditions and the effects of permafrost degradation. Climate factors affect multiple aspects of the environment, while permafrost degradation has a significant impact on soil moisture and nutrient availability, both of which are crucial for ecosystem health and vegetation growth. However, the quantitative analysis of climate and permafrost remains largely unknown, hindering our ability to predict future vegetation changes in permafrost regions. Here, we used statistical methods to analyze the NDVI change in the permafrost region from 1982 to 2022. We employed correlation analysis, multiple regression residual analysis and partial least squares structural equation modeling (PLS-SEM) methods to examine the impacts of different environmental factors on NDVI changes. The results show that the average NDVI in the study area from 1982 to 2022 is 0.39, with NDVI values in 80% of the area remaining stable or exhibiting an increasing trend. NDVI had the highest correlation with air temperature, averaging 0.32, with active layer thickness coming in second at 0.25. Climate change plays a dominant role in NDVI variations, with a relative contribution rate of 89.6%. The changes in NDVI are positively influenced by air temperature, with correlation coefficients of 0.92. Although the active layer thickness accounted for only 7% of the NDVI changes, its influence demonstrated an increasing trend from 1982 to 2022. Overall, our results suggest that temperature is the primary factor influencing NDVI variations in this region.
Litter decomposition represents a major path for atmospheric carbon influx into Arctic soils, thereby controlling below-ground carbon accumulation. Yet, little is known about how tundra litter decomposition varies with microenvironmental conditions, hindering accurate projections of tundra soil carbon dynamics with future climate change. Over 14 months, we measured landscape-scale decomposition of two contrasting standard litter types (Green tea and Rooibos tea) in 90 plots covering gradients of micro-climate and -topography, vegetation cover and traits, and soil characteristics in Western Greenland. We used the tea bag index (TBI) protocol to estimate relative variation in litter mass loss, decomposition rate (k) and stabilisation factor (S) across space, and structural equation modelling (SEM) to identify relationships among environmental factors and decomposition. Contrasting our expectations, microenvironmental factors explained little of the observed variation in both litter mass loss, as well as k and S, suggesting that the variables included in our study were not the major controls of decomposer activity in the soil across the studied tundra landscape. We use these unexpected findings of our study combined with findings from the current literature to discuss future avenues for improving our understanding of the drivers of tundra decomposition and, ultimately, carbon cycling across the warming Arctic.
1. Factors shaping arthropod and plant community structure at fine spatial scales are poorly understood. This includes microclimate, which likely plays a large role in shaping local community patterns, especially in heterogeneous landscapes characterised by high microclimatic variability in space and in time.2. We explored differences in local microclimatic conditions and regional species pools in two subarctic regions: Kilpisj & auml;rvi in north-west Finland and Varanger in north-east Norway. We then investigated the relationship between fine-scale climatic variation and local community characteristics (species richness and abundance) among plants and arthropods, differentiating the latter into two groups: flying and ground-dwelling arthropods collected by Malaise and pitfall traps, respectively. Arthropod taxa were identified through DNA metabarcoding. Finally, we examined if plant richness can be used to predict patterns in arthropod communities.3. Variation in soil temperature, moisture and snow depth proved similar between regions, despite differences in absolute elevation. For each group of organisms, we found that about half of the species were shared between Kilpisj & auml;rvi and Varanger, with a quarter unique to each region.4. Plants and arthropods responded largely to the same drivers. The richness and abun-dance of both groups decreased as elevation increased and were positively correlated with higher soil moisture and temperature values. Plant species richness was a poor predictor of local arthropod richness, in particular for ground-dwelling arthropods.5. Our results reveal how microclimatic variation within each region carves pro-nounced, yet consistent patterns in local community richness and abundance out of a joint species pool.
Large uncertainties exist in carbon-water-climate feedbacks in cold regions, partly due to an insufficient understanding of the simultaneous effects of climatic and biotic controls on water and carbon dynamics. The 10-year growing season flux data were analyzed to evaluate the relative contributions of climatic and biotic effects on the variability of water vapor (ET) and net ecosystem CO2 (NEE) exchanges over a humid alpine deciduous shrubland on the northeastern Qinghai-Tibetan Plateau. The results showed that the alpine shrubland ecosystem acted as a water source and a carbon sink during the growing season, and its potential ET and NEE ranged from 161.4 mm and -41.0 g Cm-2 to 408.0 mm and -278.4 gCm(-2) at a 95% confidence interval, respectively. The average 8-day ET and NEE during the early growing season (June to July) were both significantly (P < 0.05) more than those of the late growing season (August to September). And the slopes of ET and NEE against the Julian day during the two growth stages also changed significantly (P < 0.01). Such asymmetric manners of ET and NEE during the two growth stages were probably related to the seasonal variations of net radiation (Rn) and vegetation growth (satellite-derived enhanced vegetation index: EVI), respectively. The structural equation models showed that the seasonal variations of 8-day ET were jointly determined by Rn and vapor pressure deficit (VPD), as partly indicated by a modest decoupling coefficient (0.54 +/- 0.03). The seasonal variability in 8-day NEE was controlled by the combinations of EVI and growing season degree days (GDD). The standardized coefficient of the direct effect of EVI on ET was 0.16, much less than the corresponding value (0.51) on NEE, suggesting that a weak coupling between ET and NEE arose likely because water vapor loss were about half controlled by surface evaporation, whereas CO2 flux were largely regulated by vascular plant activity. Our results highlighted the asymmetric sensitivities of ET and NEE during the early and the late growing season, and the weak coupling of water loss and carbon fixation during the whole growing season. These findings would provide a new sight to understand the growth stage-dependent responses of water budget and carbon sequestration to grazing management and climate change in humid alpine shrublands.
Permafrost regions with high soil organic carbon (SOC) storage are extremely vulnerable to global warming. However, our understanding of the temperature sensitivity of SOC decomposition in permafrost regions remains limited, leading to considerable uncertainties in predicting carbon-climate feedback magnitude and direction in these regions. Here, we investigate general patterns and underlying mechanisms of SOC decomposition rate and its temperature sensitivity (Q(10)) at different soil depths across Tibetan permafrost regions. Soils were collected at two depths (0-10 and 20-30 cm) from 91 sites across Tibetan permafrost regions. SOC decomposition rate and Q(10) value were estimated using a continuous-flow incubation system. We found that the SOC decomposition rate in the upper layer (0-10 cm) was significantly greater than that in the lower layer (20-30 cm). The SOC content governed spatial variations in decomposition rates in both soil layers. However, the Q(10) value in the upper layer was significantly lower than that in the lower layer. Soil pH and SOC decomposability had the greatest predictive power for spatial variations in Q(10) value within the upper and lower layers, respectively. Owing to the greater temperature sensitivity in the lower layer, our results imply that subsurface soil carbon is at high risk of loss, and that soil carbon sequestration potential might decrease in these regions in a warming world.
Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide (N2O) emissions in cold regions. However, the mechanisms of soil N2O emission during the freeze-thaw cycling in the field remain unclear. We evaluated N2O emissions and soil biotic and abiotic factors in maize and paddy fields over 20 months in Northeast China, and the structural equation model (SEM) was used to determine which factors affected N2O production during non-growing season. Our results verified that the seasonal freeze-thaw cycles mitigated the available soil nitrogen and carbon limitation during spring thawing period, but simultaneously increased the gaseous N2O-N losses at the annual time scale under field condition. The N2O-N cumulative losses during the non-growing season amounted to 0.71 and 0.55 kg N ha(-1) for the paddy and maize fields, respectively, and contributed to 66 and 18% of the annual total. The highest emission rates (199.2-257.4 mu g m(-2) h(-1)) were observed during soil thawing for both fields, but we did not observe an emission peak during soil freezing in early winter. Although the pulses of N2O emission in spring were short-lived (18 d), it resulted in approximately 80% of the non-growing season N2O-N loss. The N2O burst during the spring thawing was triggered by the combined impact of high soil moisture, flush available nitrogen and carbon, and rapid recovery of microbial biomass. SEM analysis indicated that the soil moisture, available substrates including NH4+ and dissolved organic carbon (DOC), and microbial biomass nitrogen (MBN) explained 32, 36, 16 and 51% of the N2O flux variation, respectively, during the non-growing season. Our results suggested that N2O emission during the spring thawing make a vital contribution of the annual nitrogen budget, and the vast seasonally frozen and snow-covered croplands will have high potential to exert a positive feedback on climate change considering the sensitive response of nitrogen biogeochemical cycling to the freeze-thaw disturbance.
Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6cm) promoted increased ALTs, whereas deeper soil moisture (11-16cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict future impacts of climate warming on permafrost degradation and subsequent feedback to climate.