共检索到 2

Under global warming, the permafrost-underlain headwater catchments of the Tibetan Plateau have undergone extensive permafrost degradation and changes in precipitation characteristics, which may substantially alter the riverine suspended sediment and riverine solute fluxes. However, these fluxes and their influencing factors in such catchments are poorly understood. We studied the suspended sediment and solute fluxes in a permafrost-underlain headwater catchment on the northeastern Tibetan Plateau, based on comprehensive measurements of various water types in spring and summer in 2017. The daily flux of suspended sediment in spring was close to that in summer, but heavy rainfall events following a relatively long dry period made the largest contribution to the suspended sediment fluxes in summer. The riverine solute flux (in tons) was 12.6% and 27.8% of the suspended sediment flux (in tons) in spring and summer, indicating the dominating role of physical weathering in total material exportation. The snowmelt mobilized more suspended sediment fluxes and fewer solutes fluxes than summer rain, which may be due to the meltwater erosion and freeze-thaw processes in spring and the thicker thawed soil layer and better vegetation coverage in summer, and the longer contact time between the soil pore water and the soil and rock minerals after the thawing of frozen soil. The input of snowmelt driven by higher air temperatures in spring and the direct input of rainfall in summer would both act to dilute the stream water; however, the supra-permafrost water, with high solute contents, recharged the adjacent streamflow as frozen soil seeps and thus moderated the decrease in the riverine solute content during heavy snowmelt or rainfall events. With the permafrost degradation under future global warming, the solute fluxes in permafrost-underlain headwater catchments may increase, but the suspended sediment flux in spring may decrease due to the expansion of discontinuous permafrost areas and active layer thickness.

期刊论文 2022-09-01 DOI: 10.3390/w14182782

Under a warming climate, permafrost degradation has resulted in profound hydrogeological consequences. Here, we mainly review 240 recent relevant papers. Permafrost degradation has boosted groundwater storage and discharge to surface runoffs through improving hydraulic connectivity and reactivation of groundwater flow systems, resulting in reduced summer peaks, delayed autumn flow peaks, flattened annual hydrographs, and deepening and elongating flow paths. As a result of permafrost degradation, lowlands underlain by more continuous, colder, and thicker permafrost are getting wetter and uplands and mountain slopes, drier. However, additional contribution of melting ground ice to groundwater and stream-flows seems limited in most permafrost basins. As a result of permafrost degradation, the permafrost table and supra-permafrost water table are lowering; subaerial supra-permafrost taliks are forming; taliks are connecting and expanding; thermokarst activities are intensifying. These processes may profoundly impact on ecosystem structures and functions, terrestrial processes, surface and subsurface coupled flow systems, engineered infrastructures, and socioeconomic development. During the last 20 years, substantial and rapid progress has been made in many aspects in cryo-hydrogeology. However, these studies are still inadequate in desired spatiotemporal resolutions, multi-source data assimilation and integration, as well as cryo-hydrogeological modeling, particularly over rugged terrains in ice-rich, warm (>-1 degrees C) permafrost zones. Future research should be prioritized to the following aspects. First, we should better understand the concordant changes in processes, mechanisms, and trends for terrestrial processes, hydrometeorology, geocryology, hydrogeology, and ecohydrology in warm and thin permafrost regions. Second, we should aim towards revealing the physical and chemical mechanisms for the coupled processes of heat transfer and moisture migration in the vadose zone and expanding supra-permafrost taliks, towards the coupling of the hydrothermal dynamics of supra-, intra- and sub-permafrost waters, as well as that of water-resource changes and of hydrochemical and biogeochemical mechanisms for the coupled movements of solutes and pollutants in surface and subsurface waters as induced by warming and thawing permafrost. Third, we urgently need to establish and improve coupled predictive distributed cryo-hydrogeology models with optimized parameterization. In addition, we should also emphasize automatically, intelligently, and systematically monitoring, predicting, evaluating, and adapting to hydrogeological impacts from degrading permafrost at desired spatiotemporal scales. Systematic, in-depth, and predictive studies on and abilities for the hydrogeological impacts from degrading permafrost can greatly advance geocryology, cryo-hydrogeology, and cryo-ecohydrology and help better manage water, ecosystems, and land resources in permafrost regions in an adaptive and sustainable manner.

期刊论文 2022-02-01 DOI: 10.3390/w14030372
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页