共检索到 3

The Vanj River Basin contains a dynamic glacier, the Medvezhiy glacier, which occasionally poses a danger to local residents due to its surging, flooding, and frequent blockages of the Abdukahor River, leading to intense glacial lake outburst floods (GLOF). This study offers a new perspective on the quantitative assessment of glacier surface velocities and associated lake changes during six surges from 1968 to 2023 by using time-series imagery (Corona, Hexagon, Landsat), SRTM elevation maps, ITS_LIVE, unmanned aerial vehicles, local climate, and glacier surface elevation changes. Six turbulent periods (1968, 1973, 1977, 1989-1990, 2001, and 2011) were investigated, each lasting three years within a 10-11-year cycle. During inactive phases, a reduction in the thickness of the glacier tongue in the ablation zone occurred. During a surge in 2011, the flow accelerated, creating an ice dam and conditions for GLOF. Using these datasets, we reconstructed the process of the Medvezhiy glacier surge with high detail and identified a clear signal of uplift in the surface above the lower glacier tongue as well as a uniform increase in velocities associated with the onset of the surge. The increased activity of the Medvezhiy glacier and seasonal fluctuations in surface runoff are closely linked to climatic factors throughout the surge phase, and recent UAV observations indicate the absence of GLOFs in the glacier's channel. Comprehending the processes of glacier movements and related changes at a regional level is crucial for implementing more proactive measures and identifying appropriate strategies for mitigation.

期刊论文 2022-01-01 DOI: http://dx.doi.org/10.3390/rs16101730

Ground surface elevation changes are closely linked to the dynamics of the active layer and near-surface permafrost. GNSS interferometric reflectometry (GNSS-IR), a technique utilizing reflected signals regarded as noise in the GNSS applications, such as positioning and navigation, can measure surface elevation changes in permafrost areas. In this study, we screen seven major open-data GNSS networks to identify the sites which are suitable for using GNSS-IR to study the permafrost areas in the Arctic. We identify 23 usable sites and obtain their surface elevation changes. As for the unusable sites in the permafrost areas, 68% and 25% of them are due to undulated reflecting surface and obstructions (e.g., buildings and trees), respectively. And 7% of the unsuitable sites are due to insufficient usable observations, though open and relatively smooth areas can be found in their surroundings. This study provides usable sites in the Arctic permafrost areas, which can fill some spatial gaps of the existing permafrost monitoring programs and provide complementary measurements to active layer thickness and permafrost temperature. The GNSS-IR measurements can provide new perspectives into permafrost studies and contribute to assessing the potential hazards of permafrost degradation to infrastructures and residential communities.

期刊论文 2021-09-01 DOI: 10.1016/j.polar.2021.100649 ISSN: 1873-9652

As the largest valley glacier in the Qilian Mountains, the Laohugou glacier No. 12 (LHG12) has shrunk significantly since 1957. In this study, two topographic maps and a WorldView-2 satellite stereopair image data were used to assess the volume and cumulative mass balance of LHG12 located at the western Qilian Mountains during 1957-2015. During the study period, the LHG12 exhibited changes in two processes: slightly ablation and stability in a brief period during 1957-1989 and strong melting and accelerated ablation during 1989-2015. During 1957-2015, the volume of LHG12 decreased by 0.38 km(3), the average thickness decreased by 17.23 m, the cumulative mass balance (MB) was -14.69 +/- 3.00 m w. e., and ablation was found glacier-wide. By comparing the previous MB simulation and digital elevation model (DEM) differencing results, it was found that the MB simulation results underestimated the strong melting trend of LHG12 since the 1990s. Temperature rose, especially in autumn and winter, and could cause the ice temperature of LHG12 to increase, and LHG12 may become more sensitive to climate change.

期刊论文 2020-05-01 DOI: http://dx.doi.org/10.3389/feart.2022.832701
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页