共检索到 3

Exploring the complex relationship between the freeze-thaw cycle and the surface energy budget (SEB) is crucial for deepening our comprehension of climate change. Drawing upon extensive field monitoring data of the Qinghai-Tibet Plateau, this study examines how surface energy accumulation influences the thawing depth. Combined with Community Land Model 5.0 (CLM5.0), a sensitivity test was designed to explore the interplay between the freeze-thaw cycle and the SEB. It is found that the freeze-thaw cycle process significantly alters the distribution of surface energy fluxes, intensifying energy exchange between the surface and atmosphere during phase transitions. In particular, an increase of 65.6% is observed in the ground heat flux during the freezing phase, which subsequently influences the sensible and latent heat fluxes. However, it should be noted that CLM5.0 has limitations in capturing the minor changes in soil moisture content and thermal conductivity during localized freezing events, resulting in an imprecise representation of the complex freeze-thaw dynamics in cold regions. Nevertheless, these results offer valuable insights and suggestions for improving the parameterization schemes of land surface models, enhancing the accuracy and applicability of remote sensing applications and climate research.

2024-10-01 Web of Science

The presence of taliks (perennially unfrozen zones in permafrost areas) adversely affects the thermal stability of infrastructure in cold regions, including roads. The role of heat advection on talik development and feedback on permafrost degradation has not been quantified methodically in this context. We incorporate a surface energy balance model into a coupled groundwater flow and energy transport numerical model (SUTRA-ice). The model, calibrated with long-term observations (1997-2018 on the Alaska Highway), is used to investigate and quantify the role of heat advection on talik initiation and development under a road embankment. Over the 25-year simulation period, the new model is driven by reconstructed meteorological data and has a good agreement with near surface soil temperatures. The model successfully reproduces the increasing depth to the permafrost table (mean absolute error <0.2 m), and talik development. The results demonstrate that heat advection provides an additional energy source that expedites the rate of permafrost thaw and roughly doubles the rate of permafrost table deepening, compared to purely conductive thawing. Talik initially formed and grew over time under the combined effect of water flow, snow insulation, road construction and climate warming. Talik formation creates a new thermal state under the road embankment, resulting in acceleration of underlying permafrost degradation, due to the positive feedback of heat accumulation created by trapped unfrozen water. In a changing climate, mobile water flow will play a more important role in permafrost thaw and talik development under road embankments, and is likely to significantly increase maintenance costs and reduce the long-term stability of the infrastructure.

2023-04-01 Web of Science

The surface energy budget over the Qinghai-Tibet Plateau (QTP) and the Arctic significantly influences the climate system with global consequences. The performances of 30 selected Coupled Model Intercomparison Project Phase 6 (CMIP6) models were evaluated based on six sites in the QTP and Arctic. The simulation results for latent heat flux (LE) were more accurate in the QTP, where the correlation coefficient and root mean square error (RMSE) were 0.9 and 30 W m(-2), respectively. The results for sensible heat flux (H) were more accurate in the Arctic, the correlation coefficient and RMSE were 0.8 and 24 W m(-2), respectively. Furthermore, the multiple models mean results revealed that the surface energy flux had seasonal variation and regional differences over the QTP and the Arctic. In the QTP, H was the lowest in winter, increased in spring, and reached the maximum in summer. However, the transitional changes in spring and autumn were not apparent in the Arctic, mainly due to seasonal net radiation difference between the two places. LE was affected by precipitation and surface soil moisture content. This work is important for understanding land-atmosphere interactions and useful for improving the accuracy of land surface models simulations.

2022-12
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页