Air pollution is a global health issue, and events like forest fires, agricultural burning, dust storms, and fireworks can significantly worsen it. Festivals involving fireworks and wood-log fires, such as Diwali and Holi, are key examples of events that impact local air quality. During Holi, the ritual of Holika involves burning of biomass that releases large amounts of aerosols and other pollutants. To assess the impact of Holika burning, observations were conducted from March 5th to March 18th, 2017. On March 12th, 2017, around 1.8 million kg of wood and biomass were openly burned in about 2250 units of Holika, located in and around the Varanasi city (25.23 N, 82.97 E, similar to 82.20 m amsl). As the Holika burning event began the impact on the Black Carbon (BC), particulate matter 10 & 2.5 (PM10 and PM2.5), sulphur dioxide (SO2), oxides of nitrogen (NOx), ozone (O-3) and carbon monoxide (CO) concentration were observed. Thorough optical investigations have been conducted to better comprehend the radiative effects of aerosols produced due to Holika burning on the environment. The measured AOD at 500 nm values were 0.315 +/- 0.072, 0.392, and 0.329 +/- 0.037, while the BC mass was 7.09 +/- 1.78, 9.95, and 7.18 +/- 0.27 mu g/m(3) for the pre-Holika, Holika, and post-Holika periods. Aerosol radiative forcing at the top of the atmosphere (ARF-TOA), at the surface (ARF-SUR), and in the atmosphere (ARF-ATM) are 2.46 +/- 4.15, -40.22 +/- 2.35, and 42.68 +/- 4.12 W/m(2) for pre-Holika, 6.34, -53.45, and 59.80 W/m(2) for Holika, and 5.50 +/- 0.97, -47.11 +/- 5.20, and 52.61 +/- 6.17 W/m(2) for post-Holika burning. These intense observation and analysis revealed that Holika burning adversely impacts AQI, BC concentration and effects climate in terms of ARF and heating rate.
Svalbards permafrost is thawing as a direct consequence of climate change. In the Low Arctic, vegetation has been shown to slow down and reduce the active layer thaw, yet it is unknown whether this also applies to High Arctic regions like Svalbard where vegetation is smaller, sparser, and thus likely less able to insulate the soil. Therefore, it remains unknown which components of High Arctic vegetation impact active layer thaw and at which temporal scale this insulation could be effective. Such knowledge is necessary to predict and understand future changes in active layer in a changing Arctic. In this study we used frost tubes placed in study grids located in Svalbard with known vegetation composition, to monitor the progression of active layer thaw and analyze the relationship between vegetation composition, vegetation structure and snow conditions, and active layer thaw early in summer. We found that moss thickness, shrub and forb height, and vascular vegetation cover delayed soil thaw immediately after snow melt. These insulating effects attenuated as thaw progressed, until no effect on thaw depth was present after 8 weeks. High Arctic mosses are expected to decline due to climate change, which could lead to a loss in insulating capacity, potentially accelerating early summer active layer thaw. This may have important repercussions for a wide range of ecosystem functions such as plant phenology and decomposition processes. Temperatures are rising in the Arctic, causing increased thaw of the layer of soil located above the permanently frozen ground. In Low Arctic regions vegetation cools the soil, which reduces the thawing. So far, we do not know whether the small plants growing in the High Arctic may be able to slow or reduce thaw. We measured soil thaw throughout the summer in High Arctic Svalbard in locations where vegetation composition is known. We also measured thickness of the moss layer, height of plants and snow depth. We found that moss thickness was the strongest factor in insulating the soil. Also the cover of plants, height of shrubs and forbs, and height of grass-like plants slowed soil thaw in the early summer. The insulating effects became less over time and no effects were found 8 weeks after onset of thaw. As climate change is causing changes in the Arctic vegetation, mosses and small shrubs are expected to decrease. As we found these to be the most important factors in insulating the soil, a future decrease in mosses and small shrubs may cause accelerated soil thaw at the start of summer. High Arctic vegetation slows active layer thaw in early summer after snow melt Mosses show a stronger negative relation with thaw depth than vascular vegetation Factors influencing active layer thaw change over time in early summer