共检索到 2

Future changes of pan-Arctic land-atmospheric methane (CH4) and carbon dioxide (CO2) depend on how terrestrial ecosystems respond to warming climate. Here, we used a coupled hydrology-biogeochemistry model to make our estimates of these carbon exchanges with two contrasting climate change scenarios (no-policy versus policy) over the 21st century, by considering (1) a detailed water table dynamics and (2) a permafrost-thawing effect. Our simulations indicate that, under present climate conditions, pan-Arctic terrestrial ecosystems act as a net greenhouse gas (GHG) sink of -0.2 Pg CO2-eq.yr(-1), as a result of a CH4 source (53 Tg CH4 yr(-1)) and a CO2 sink (-0.4 Pg C yr(-1)). In response to warming climate, both CH4 emissions and CO2 uptakes are projected to increase over the century, but the increasing rates largely depend on the climate change scenario. Under the non-policy scenario, the CH4 source and CO2 sink are projected to increase by 60% and 75% by 2100, respectively, while the GHG sink does not show a significant trend. Thawing permafrost has a small effect on GHG sink under the policy scenario; however, under the no-policy scenario, about two thirds of the accumulated GHG sink over the 21st century has been offset by the carbon losses as CH4 and CO2 from thawing permafrost. Over the century, nearly all CO2-induced GHG sink through photosynthesis has been undone by CH4-induced GHG source. This study indicates that increasing active layer depth significantly affects soil carbon decomposition in response to future climate change. The methane emissions considering more detailed water table dynamics continuously play an important role in affecting regional radiative forcing in the pan-Arctic.

期刊论文 2013-10-01 DOI: 10.1088/1748-9326/8/4/045003 ISSN: 1748-9326

In terrestrial high-latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze-thaw transitions due to climate change. These modifications may result in temporal shifts in the growing season and the associated rates of terrestrial productivity. Changes in productivity will influence the ability of these ecosystems to sequester atmospheric CO2. We use the terrestrial ecosystem model (TEM), which simulates the soil thermal regime, in addition to terrestrial carbon (C), nitrogen and water dynamics, to explore these issues over the years 1960-2100 in extratropical regions (30-90 degrees N). Our model simulations show decreases in snow cover and permafrost stability from 1960 to 2100. Decreases in snow cover agree well with National Oceanic and Atmospheric Administration satellite observations collected between the years 1972 and 2000, with Pearson rank correlation coefficients between 0.58 and 0.65. Model analyses also indicate a trend towards an earlier thaw date of frozen soils and the onset of the growing season in the spring by approximately 2-4 days from 1988 to 2000. Between 1988 and 2000, satellite records yield a slightly stronger trend in thaw and the onset of the growing season, averaging between 5 and 8 days earlier. In both, the TEM simulations and satellite records, trends in day of freeze in the autumn are weaker, such that overall increases in growing season length are due primarily to earlier thaw. Although regions with the longest snow cover duration displayed the greatest increase in growing season length, these regions maintained smaller increases in productivity and heterotrophic respiration than those regions with shorter duration of snow cover and less of an increase in growing season length. Concurrent with increases in growing season length, we found a reduction in soil C and increases in vegetation C, with greatest losses of soil C occurring in those areas with more vegetation, but simulations also suggest that this trend could reverse in the future. Our results reveal noteworthy changes in snow, permafrost, growing season length, productivity, and net C uptake, indicating that prediction of terrestrial C dynamics from one decade to the next will require that large-scale models adequately take into account the corresponding changes in soil thermal regimes.

期刊论文 2006-04-01 DOI: 10.1111/j.1365-2486.2006.01113.x ISSN: 1354-1013
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页