共检索到 2

Between 23 and 25 January 2020, the Metropolitan Region of Belo Horizonte (MRBH) in Brazil experienced 32 natural disasters, which affected 90,000 people, resulted in 13 fatalities, and caused economic damages of approximately USD 250 million. This study aims to describe the synoptic and mesoscale conditions that triggered these natural disasters in the MRBH and the physical properties of the associated clouds and precipitation. To achieve this, we analyzed data from various sources, including natural disaster records from the National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), GOES-16 satellite imagery, soil moisture data from the Soil Moisture Active Passive (SMAP) satellite mission, ERA5 reanalysis, reflectivity from weather radar, and lightning data from the Lightning Location System. The South Atlantic Convergence Zone, coupled with a low-pressure system off the southeast coast of Brazil, was the predominant synoptic pattern responsible for creating favorable conditions for precipitation during the studied period. Clouds and precipitating cells, with cloud-top temperatures below -65 degrees C, over several days contributed to the high precipitation volumes and lightning activity. Prolonged rainfall, with a maximum of 240 mm day-1 and 48 mm h-1, combined with the region's soil characteristics, enhanced water infiltration and was critical in triggering and intensifying natural disasters. These findings highlight the importance of monitoring atmospheric conditions in conjunction with soil moisture over an extended period to provide additional information for mitigating the impacts of natural disasters.

期刊论文 2025-01-01 DOI: 10.3390/atmos16010102

Rwanda, in eastern tropical Africa, is a small, densely populated country where climatic disasters are often the cause of considerable damage and deaths. Landslides are among the most frequent hazards, linked to the country's peculiar configuration including high relief with steep slopes, humid tropical climate with heavy rainfall, intense deforestation over the past 60 years, and extensive use of the soil for agriculture. The Karongi region, in the west-central part of the country, was affected by an exceptional cluster of more than 700 landslides during a single night (6-7 May 2018) over an area of 100 km2. We analyse the causes of this spectacular event based on field geological and geomorphology investigation and CHIRPS and ERA5-Land climate data. We demonstrate that (1) the notably steep slopes favoured soil instability; (2) the layered soil and especially the gravelly, porous C horizon allowed water storage and served as a detachment level for the landslides; (3) relatively low intensity, almost continuous rainfall over the previous two months lead to soil water-logging; and (4) acoustic waves from thunder or mechanical shaking by strong wind destabilized the water-logged soil through thixotropy triggering the landslides. This analysis should serve as a guide for forecasting landslide-triggering conditions in Rwanda.

期刊论文 2024-12-01 DOI: 10.3390/geohazards5040049
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页