An analytical methodology was developed for the first time in this work enabling the simultaneous enantiomeric separation of the fungicide fenpropidin and its acid metabolite by Capillary Electrophoresis. A dual cyclodextrin system consisting of 4 % (w/v) captisol with 10 mM methyl-beta-cyclodextrin was employed in a 100 mM sodium acetate buffer at pH 4.0. Optimal experimental conditions (temperature 25 degrees C, separation voltage -25 kV, and hydrodynamic injection of 50 mbar x 10 s) allowed the simultaneous separation of the four enantiomers in <10.7 min with resolutions of 3.1 (fenpropidin) and 3.2 (its acid metabolite). Analytical characteristics of the method were evaluated and found adequate for the quantification of both chiral compounds with a linearity range from 0.75 to 70 mg L-1, good accuracy (trueness included 100 % recovery, precision with RSD<6 %), and limits of detection and quantification of 0.25 and 0.75 mg L-1, respectively, for the four enantiomers. No significant differences were found between the concentrations determined and labelled of fenpropidin in a commercial agrochemical formulation. The stability over time (0-42 days) of fenpropidin enantiomers using the commercial agrochemical formulation was evaluated in two sugar beet soils, revealing to be stable at any time in one sample, while in the other a decrease of 45 % was observed after 42 days. Individual and combined toxicity of fenpropidin and its metabolite was determined for the first time for marine organism Vibrio fischeri, demonstrating higher damage caused by parent compound. Synergistics and antagonists' interactions were observed at low and high effects levels of contaminants.
Subsequent crops are often sensitive to acetolactate synthase (ALS)-inhibiting herbicide residues, particularly in alkaline soils. The main objective of this study was to compare the impact of different ALS-inhibiting residual herbicides on growth of oil-seed rape (Brassica napus L. subsp. napus) and sugar beet (Beta vulgaris L.) in alkaline soil. In this regard, three experiments were conducted in Prague, Czech Republic, during 2021-2023. In spring, six herbicides (amidosulfuron, chlorsulfuron, imazamox, propoxycarbazone, pyroxsulam, sulfosulfuron) were applied at three application rates (1N - full, 0.5N - half, and 0.05N - 5 % of full). One and four months after application, half of each plot was sown with oilseed rape, and the other half was sown with sugar beet. Herbicide phytotoxicity and aboveground biomass were assessed four weeks after crop emergence. Weather conditions during experimental years, herbicides used, herbicide application rates and the period between herbicide application and crop sowing affected herbicide phytotoxicity and aboveground biomass of both crops. The most damaging effects were recorded with the application of chlorsulfuron for oilseed rape (phytotoxicity was 96-98 % at one month after 1N application) and sulfosulfuron and chlorsulfuron for sugar beet (phytotoxicity was 97-100 % and 90-100 %, respectively). Pyroxsulam caused the least damage to both the crops (average phytotoxicity was 18 %). Herbicide phytotoxicity was 3-times higher, and crop biomass was almost half as much as at the first assessment compared to the second assessment. Sugar beet was more sensitive than oilseed rape to chlorsulfuron and sulfosulfuron, especially in dry conditions, where 0.05 N rates caused biomass reduction of 20-60 % in sugar beet. Most of the tested herbicides could have residual effect that likely damages crops in rotation, particularly if a dry period occurs after the application of herbicides and/or sowing of crops.
Nanoplastics (NPs) and zinc (Zn), both widespread in soil environments, present considerable risks to soil biota. While NPs persist environmentally and act as vectors for heavy metals like Zn, their combined toxicity, especially in soil invertebrates, remains poorly understood. This study evaluates the individual and combined effects of Zn and NPs on earthworm coelomocytes and explores their interactions with Cu/Zn-superoxide dismutase (SOD), an antioxidant enzyme. Molecular docking revealed that NPs bind near the active site of SOD through pi-cation interactions with lysine residues, further stabilized by neighboring hydrophobic amino acids. Viability assays indicated that NPs alone (20 mg/L) had negligible impact (94.54 %, p > 0.05), Zn alone (300 mg/L) reduced viability to 80.02 %, while co-exposure reduced it further to 73.16 %. Elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA) levels were elevated to 186 % and 173 % under co-exposure, alongside greater antioxidant enzyme disruption, point to synergistic toxicity. Dynamic light scattering and zeta potential (From -13 to -7 mV) analyses revealed larger particle sizes in the combined system, indicative of enhanced protein interactions. Conformational changes in SOD, such as alpha-helix loss and altered fluorescence, further support structural disruption. These findings demonstrate that co-exposure to NPs and Zn intensifies cellular and protein-level toxicity via integrated physical and biochemical mechanisms, providing critical insight into the ecological risks posed by such co-contaminants in soil environments.
Thallium (Tl) is a highly toxic heavy metal. It is widely spread in soil. However, the effects of Tl on soil invertebrates have received limited attention. Eisenia fetida, a sensitive and widely used bioindicator, is important in assessing ecological risks in soil ecosystems. It is conceivable that the stress resistance of E. fetida may vary depending on its diet, potentially influencing the assessment of ecological risks associated with contaminants. This study aims to assess the toxicological effects of Tl in soil on E. fetida, focusing on mechanisms involving Tlinduced oxidative stress, disruption of antioxidant defenses, and diet-mediated differences in physiological tolerance. E. fetida was nourished with yogurt waste or cow dung as their primary food source before exposure. The research showed a significant correlation between the increase in soil Tl levels and its bioaccumulation in E. fetida. The highest Tl accumulation was observed in E. fetida fed with yogurt waste (5.55 mu g g-1), exceeding those fed with cow dung (4.77 mu g g-1). Tl inhibited the growth of E. fetida and induced oxidative stress responses. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) initially increased at lower concentrations and earlier time points but were suppressed at higher Tl concentrations and longer exposures. In contrast, glutathione S-transferase (GST) and glutathione peroxidase (GPx) activities were generally elevated, especially in yogurt waste-fed worms. Additionally, reduced glutathione (GSH) levels declined over time, while malondialdehyde (MDA) levels increased significantly, indicating lipid peroxidation and oxidative damage. Furthermore, the Integrated Biomarker Response index indicated that cow dung-fed E. fetida exhibited a higher level of toxic stress when compared to those fed with yogurt waste. In a comparative analysis, despite accumulating more Tl, yogurt waste-fed E. fetida exhibited a lower overall toxic response than their cow dung-fed counterparts. Our results suggest that the diet, specifically yogurt waste, can enhance Tl tolerance in E. fetida. Hence, when assessing the ecological risk of Tl concerning earthworms, it is imperative to consider their dietary sources to increase the scientific validity of evaluation results.
Soil acidification regulates the mobility of aluminum (Al) and manganese (Mn), thereby affecting legumes growth. Bioenergy by-products (BBP) including biochar, bottom ash and biogas slurry, can mitigate soil metal toxicity in acidic soils; however, the precise impacts of these amendments in soil-plant system remains unknown. Therefore, different treatments of BBP namely Control (T1), Biogas slurry (T2), Bottom ash (T3), Biochar (T4), Biogas slurry with bottom ash (T5), Biogas slurry with biochar (T6), Bottom ash with biochar (T7), and Biochar along with bottom ash and biogas slurry (T8) were used to mitigate the bioavailability and toxicity of Al and Mn. Results revealed that T8 reduced Al and Mn content by 63 % and 78 % in soil and 64 % and 65 % in soybean plants, respectively. Notably, T8 mitigates oxidative damage and improves rubisco activity, photosynthetic efficiency, and antioxidant activities as compared to other treatments. Furthermore, Transmission electron microscopy (TEM) shows that cell structure restoration was obvious under T6 and T8 than that of other treatments. The antioxidant genes (GmSOD, GmCAT1, and GmPOD1) and photosynthesis genes (GmRbcS and GmRCA beta) expressions were upregulated in T7 and T8 than that of other treatments. Our correlations analysis shows that BBP improved soil organic matter and further enhanced the availability of NO3-, P, and K in the soil. Furthermore, increased soil pH by BBP significantly decreased the NH4+ availability in the soil. In conclusion, our study demonstrates that BBP can enhance soybean physiological characteristics by modulating soil pH and improving nutrient availability.
Agricultural nanotechnology has emerged as an effective tool for enhancing crop yield and agricultural productivity amid the growing world population. Over the past ten years, application of nanoparticles (NPs) as nano fertilizers or bio-stimulants has been grown to enhance the morphological and biochemical parameters of various crops. The growth and development of edible crop is affected by soil iron deficiency, particularly in agricultural land that lacks sustainable management practices. This review evaluates effect of Iron oxide nanoparticles (IONPs) on agricultural plant growth. Iron is a micro-nutrient, which is essential for plants. The uptake of IONPs in plant mainly depends upon the exposure method i.e. foliar spray through leaves, soil treatment through roots and seed priming through pre-soaking of seeds. Their impact can be positive or negative depending on the variable conditions in the environment, application method, duration of exposure, concentration and size of IONPs. Various studies have shown that IONPs had affected the growth, seed germination, yield and quality of plants. Low concentration of IONPs resulted in increased rate of seed germination, plant biomass and photosynthetic pigments while at high concentration it causes toxicity by generating hydroxyl radicals leading to plant damage. This review provides an overview of IONPs effect on plants, seed germination, plant growth and morphology, yield and quality, their application in different plants, photosynthesis and toxicity.
Investigating the toxicological effects of aged nanoplastics (NPs) in soil is critical, as UV irradiation may exacerbate their ecological toxicity by altering surface properties and enhancing interactions with the soil. Here, we investigated the effects of different concentrations of pristine and aged polystyrene (PS) and carboxylpolystyrene (PSC) NPs on lettuce and soil properties. Both pristine and aged NPs inhibited pigment synthesis and lettuce growth. The maximum growth inhibition rates of leaf (root) biomass were 10.2 % (23.4 %) and 32.7 % (45.3 %) for pristine PS and PSC (50 mg center dot L- 1) and 26.7 % (35.9 %) and 43.1 % (57.8 %) for aged PS and PSC (50 mg center dot L- 1), respectively. NPs induced excessive reactive oxygen species (ROS) production in the leaves and roots, antioxidant defense mechanisms, and oxidative damage, which was more pronounced with aged NPs. ROS accumulation gradually increased with aging time and concentration of NPs, which inhibited photosynthesis and decreased biomass. At the same aging duration, exposure to either pristine or aged NPs significantly reduced soil pH. Compared to the control, neither pristine nor aged NPs altered the composition of dissolved organic matter, whereas aged PSC induced a significant increase in the intensity of soluble microbial byproducts; this was attributed to differences in soil acidity and alkalinity. Low concentrations of pristine and aged NPs increased the Chao 1 index in soils, exhibiting hormesis, and altered relative microbial abundances. Pristine and aged PS/ PSCs promoted microbial oxidative phosphorylation, carbon fixation pathways in prokaryotes, and the tricarboxylic acid cycle. The results provide critical insights into the impacts of NPs on plant and soil microbial growth.
Atrazine (ATR) is a widely utilized herbicide that has been demonstrated to exert a multitude of deleterious effects on the environment, particularly with regard to water and soil contamination. Moreover, its disruption of endocrine function and implications for antibiotic resistance underscore the urgent need to prioritize alternative solutions for both ecosystems and human health. Therefore, the objective of this study was to investigate a range of neurotoxic effects associated with atrazine-induced damage in the prefrontal lobe of mice. The results of this study indicate that treatment with ATR in C57BL/6 J mice resulted in cognitive-related behavioral deficits, including anxiety and depression, as well as motor impairments. In vivo analyses demonstrated that ATR exposure resulted in a reduction in neuronal synapse density at the microstructural level, while also compromising prefrontal morphological integrity, nociceptor count, and overall neuronal health within the brain. These findings collectively suggest that synaptic deficits are implicated in ATR-induced behavioral abnormalities observed in these mice. Furthermore, our findings revealed that ATR exposure resulted in elevated TDP-43 expression levels that were ectopically localized within the cytoplasm. This alteration led to impaired functionality of mRNP granules and contributed to the development of abnormal synaptic defects. Conversely, TDP43 has the potential to localize ectopically to mitochondria, where it activates the mitochondrial unfolded protein response (UPRmt), which ultimately results in mitochondrial dysfunction. These findings collectively indicate a strong correlation between TDP-43 dysregulation and the progression of neurodegenerative diseases. Further investigation into the potential neurotoxicity of atrazine may foster heightened awareness, leading to more stringent regulatory measures, research into safer alternatives, and the adoption of sustainable practices, which are essential for safeguarding environmental integrity alongside human health.
It has not been known how immune responses in soil invertebrates occur against microplastics (MPs). This study aims to investigate the effects of MPs on endocytosis, including phagocytosis and pinocytosis, of immune cells of soil invertebrates in the soil ecosystem in the process of bacterial infection. We employed polystyrene micro- plastics (similar to 1 mu m PS MPs) to treat earthworm Eisenia andrei during the infection of Escherichia coli for in vitro (1, 5, 10, and 50 mg/L) and in vivo (1, 10, and 1000 mg/kg dry soil) assays. The results of in vitro migration assay revealed that MPs caused inhibitory effects on the phagocytosis, pinocytosis and oxidative stress in coelomocytes. Soil bioassay also confirmed that endocytosis of coelomocytes and mitochondrial damages in the intestinal epithelium were significantly altered in the polluted soil with MPs. Thus, MPs induced adverse effects to inhibit bacterial endocytosis, which may disturb the immune system of soil invertebrates. This study is the first report on the inhibition of phagocytosis in the soil invertebrates by MPs. These findings contribute to understanding the response of soil invertebrates, which play important roles in the soil food web with cellular level towards microplastic pollution in soil.
Microplastics (MPs) are newly emerged pollutants found in water and soil, while microcystin-leucine arginine (MC-LR) is often detected in drinking water and water products, both posing serious threats to aquatic environment and food safety. MPs can serve as carriers of MC-LR. These pollutants are often found together, rather than separately. This study focused on assessing the neurotoxicity of co-exposure to MC-LR and PS in Caenorhabditis elegans (C. elegans) after combined exposure to these two pollutants. Exposure to varying concentrations of polystyrene (PS) and MC-LR individually caused a dose-dependent decrease in the locomotion behaviors of C. elegans. Exposure to either of these substances alone caused damage to the phenotypic indicators of the C. elegans. To further explore the additional damage caused by the combined exposure of PS and MC-LR, the low, medium, and high combined dose groups were selected based on the locomotion behaviors and survival results. Combined exposure increased the level of oxidative stress indicators and resulted in neuronal loss. It also reduced serotonin, glutamate, GABA, and dopamine neurotransmitters levels, without affecting cholinergic neurons. The expression of neurotransmitter-related genes also decreased. The high-dose group showed the most significant effects. This article is the first to study the combined effect of PS and MC-LR on C. elegans nervous systems, offering novel insights into the risks posed by co-occurring contaminants and their implications for aquatic ecosystems and food safety.