Larch-dominant communities are the most extensive high-latitude forests in Eurasia and are experiencing the strongest impacts from warming temperatures. We analyzed larch (Larix dahurica Turcz) growth index (GI) response to climate change. The studied larch-dominant communities are located within the permafrost zone of Northern Siberia at the northern tree limit (ca. N 67A degrees 38', E 99A degrees 07'). Methods included dendrochronology, analysis of climate variables, root zone moisture content, and satellite-derived gross (GPP) and net (NPP) primary productivity. It was found that larch response to warming included a period of increased annual growth increment (GI) (from the 1970s to ca. 1995) with a follow on GI decline. Increase in GI correlated with summer air temperature, whereas an observed decrease in GI was caused by water stress (vapor pressure deficit and drought increase). Water stress impact on larch growth in permafrost was not observed before the onset of warming (ca. 1970). Water limitation was also indicated by GI dependence on soil moisture stored during the previous year. Water stress was especially pronounced for stands growing on rocky soils with low water-holding capacity. GPP of larch communities showed an increasing trend, whereas NPP stagnated. A similar pattern of GI response to climate warming has also been observed for Larix sibirica Ledeb, Pinus sibirica Du Tour, and Abies sibirica Ledeb in the forests of southern Siberia. Thus, warming in northern Siberia permafrost zone resulted in an initial increase in larch growth from the 1970s to the mid-1990s. After that time, larch growth increment has decreased. Since ca. 1990, water stress at the beginning of the vegetative period became, along with air temperature, a main factor affecting larch growth within the permafrost zone.
The boreal forest accounts for approximately 22% of the Northern Hemisphere landmass with nearly 40% of this huge biome growing on continuously frozen soils. Projected climate change leading to degradation of permafrost and increasing drought situation at high latitudes in Eurasia will seriously affect productivity of forests on permafrost. Here we present the results of an on-going research of tree radial growth in the midst of the permafrost zone in Siberia, Russia (Tura region, 64 degrees N, 100 degrees E, 140-610 m a.s.1.). Tree-ring width and density chronologies of Gmelin larch and Siberian spruce from a great variety of sites characterized by different thermo-hydrological regime of soils are analyzed. The obtained results reveal that current tree radial growth and tree-ring structure in permafrost region in Siberia are largely dependent on local site conditions and may be constrained by low air and soil temperatures as well as soil water availability. Varying climatic responses and seasonal radial growth of trees at different habitats indicate a range of possible scenarios of further development of northern larch stands. Forest fire is another important factor strongly affecting tree stand dynamics and forest ecosystem functioning in the continuous permafrost zone. Analysis of tree-ring parameters indicate that post-fire dynamics of tree-ring structure is in accordance with the changes in habitat conditions caused by removal by fire and then gradual recovery of ground vegetation resulting in an alteration in soil active layer depth. In general, the results of this multi-proxy analysis for trees growing under various conditions in the continuous permafrost zone in Siberia allow assumptions about changes in tree productivity, stand dynamics and therefore carbon uptake under projected climate change and permafrost degradation.