共检索到 2

Introduction: Soil drought during summer in Central Europe has become more frequent and severe over the last decades. European forests are suffering increasing damage, particularly Norway spruce. Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), a non-native tree species, is considered as a promising alternative to build drought-resilient forests. The main goal of this study was to investigate the intraannual radial stem growth and sap flow performance of Douglas-fir along a precipitation gradient across Germany under severe drought. Material and methods: Sap flow and stem radial changes of up to ten trees each at four sites with different precipitation regimes were measured in combination with volumetric soil water content during the growing season of 2022. Measurements of stem radial changes were used to calculate the trees' stem water deficit, a proxy for tree water status and drought stress. Results: The severe summer drought of 2022 led to an early growth cessation and a significant reduction in daily sap flow at all four sites monitored. We could identify a site-specific threshold in soil water availability ranging between 21.7 and 29.6% of relative extractable water (REW) under which stem water reserves cannot be replenished and thereby inhibiting radial growth. We could also demonstrate that at this threshold, sap flow is heavily reduced to between 43.5 and 53.3%, and for a REW below 50%, sap flow linearly decreases by 1.1-2.0% per 1% reduction in REW. This reduction tends to follow the humidity gradient, being more pronounced at the most oceanic characterized site and suggesting an adaptation to site conditions. Even though Douglas-fir is considered to be more drought stress resistant than Norway spruce, growth and sap flow are greatly reduced by severe summer drought, which became more frequent in recent years and their frequency and intensity is likely to increase. Conclusions: Our results suggest that timber production of Douglas-fir in Central Europe will decline considerably under projected climate change, and thus pointing to site specific growth constraints for a so far promising non-native tree species in Europe.

期刊论文 2024-08-06 DOI: 10.3389/fpls.2024.1401833 ISSN: 1664-462X

Changes are projected for the boreal biome with complex and variable effects on forest vegetation including drought-induced tree mortality and forest loss. With soil and atmospheric conditions governing drought intensity, specific drivers of trees water stress can be difficult to disentangle across temporal scales. We used wavelet analysis and causality detection to identify potential environmental controls (evapotranspiration, soil moisture, rainfall, vapor pressure deficit, air temperature and photosynthetically active radiation) on daily tree water deficit and on longer periods of tree dehydration in black spruce and tamarack. Daily tree water deficit was controlled by photosynthetically active radiation, vapor pressure deficit, and air temperature, causing greater stand evapotranspiration. Prolonged periods of tree water deficit (multi-day) were regulated by photosynthetically active radiation and soil moisture. We provide empirical evidence that continued warming and drying will cause short-term increases in black spruce and tamarack transpiration, but greater drought stress with reduced soil water availability. This research explores how climate change could impact the water stress experienced by black spruce and tamarack trees in the western boreal forest of Canada. We focused on a key measure called tree water deficit to understand if the trees were under stress due to insufficient water. We examined how tree water deficit relates to environmental factors such as temperature, sunlight, and soil moisture. The findings revealed that, on a daily basis, factors like sunlight and temperature cause trees to release more water into the air. However, over longer periods (days to weeks), the amount of water in the soil becomes crucial, suggesting that trees might face water stress during dry spells. So, while trees could grow more on hotter, sunnier days, they could also experience water stress and reduced growth if the soil becomes too dry for an extended period. This study helps us grasp how various factors interact to influence tree water stress in the boreal forest, providing insights important for managing these ecosystems in a changing climate. A novel approach to determine environmental controls of tree water deficit across time scales with wavelet analysis and Granger causality Soil moisture emerges as a significant control of tree water deficit in boreal trees at longer scales (multi-days) Daily productivity gains with warming will be mitigated by decreased soil water availability in longer periods of tree water deficit

期刊论文 2024-04-28 DOI: 10.1029/2023GL107477 ISSN: 0094-8276
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页