Land-cover changes and new ecosystem trajectories in Interior Alaska have altered the structure and function of landscapes, with regional warming trends altering carbon and water cycling. Notably, these changes include the increased distribution of tall woody vegetation, trees and shrubs, in landscapes that historically only supported low shrub vegetation cover. In Denali National Park, Alaska, this phenomenon has altered primary succession pathways towards tundra ecosystems with the establishment and expansion of balsam poplar (Populus balsamifera) trees. In this study, we examine how snow, soil, and vegetation processes interact within this altered successional pathway towards further landscape change following glacial recession. In a sequence of outflow terraces, we found that variations in snow depth, functional soil depth, leaf area index, overstory height, and understory height were all significantly correlated with each other, with those effects largely explained by the presence of poplar. Poplar-dominated plots had deeper snowpacks, deeper functional soil depths, taller overstory and shrub heights, and greater LAI than in non-poplar plots of the same landscape age. These findings suggest a feedback cycle where the establishment of taller vegetation (here, poplar) alters ecosystem processes in the following notable ways: taller vegetation is able to trap more snow by reducing wind exposure and limiting sublimation; this snow provides water through additional snowmelt and insulation, keeping soils warmer and lessening permafrost development, leading to deeper functional soil depths. This feedback demonstrates poplar's ability to modify the environment as an ecosystem engineer, engineering a trajectory away from the otherwise expected permafrost-underlain tundra.
Our understanding of tundra fire effects in Northern Alaska is limited because fires have been relatively rare. We sampled a 70+ year -old burn visible in a 1948 aerial photograph for vegetation composition and structure, soil attributes, terrain rugosity, and thermokarst pit density. Between 1948 and 2017 the burn initially became wetter as ice wedges melted but then drained and dried as the troughs became hydrologically connected. The reference tundra has become wetter over the last few decades and appears to be lagging through a similar sequence. The burn averaged 2.5 degrees C warmer than the reference tundra at 30 cm depth. Thinning of organic soil following fire appears to dramatically accelerate the background degradation of ground-ice features in response to climate change and promotes a plant community that is distinct in terms of taxa and structure, dominated by tall willows and other competitive, rather than cold-tolerant, species. The cover of sedges and mosses is low while that of willows and grass is high relative to the reference tundra. The changes in plant community composition and structure, increasing ground temperature, and thermokarst lead us to expect the observed biophysical changes to the tundra will persist centuries into the future.
Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.