Climate change has led to increased frequency, duration, and severity of meteorological drought (MD) events worldwide, causing significant and irreversible damage to terrestrial ecosystems. Understanding the impact of MD on diverse vegetation types is essential for ecological security and restoration. This study investigated vegetation responses to MD through a drought propagation framework, focusing on the Yangtze River Basin in China, which has been stricken by drought frequently in recent decades. By analyzing propagation characteristics, we assessed the sensitivity and vulnerability of different vegetation types to drought. Using Copula modeling, the occurrence probability of vegetation loss (VL) under varying MD conditions was estimated. Key findings include: (1) The majority of the Yangtze River Basin showed a high rate of MD to VL propagation. (2) Different vegetation types exhibited varied responses: woodlands had relatively low sensitivity and vulnerability, grasslands showed medium sensitivity with high vulnerability, while croplands demonstrated high sensitivity and moderate vulnerability. (3) The risk of extreme VL increased sharply with rising MD intensity. This framework and its findings could provide valuable insights for understanding vegetation responses to drought and inform strategies for managing vegetation loss.
BackgroundIn winter, tea plants are highly susceptible to low-temperature freezing damage. The rapid recovery of tea plant vigor in spring is crucial for tea yield and quality. Some studies have reported that Bacillus mucilaginosus could improve the stress resistance of plants. However, there were no reports on the effect of B. mucilaginosus on the recovery of tea plant vigor after low-temperature stress. This study firstly used different concentrations of B. mucilaginosus to spray tea leaves and used 16S rRNA high-throughput sequencing technology to study the impact of different treatments on tea leaf endophytic populations. Meanwhile, physiological indexes such as Soil and plant analyzer development values (SPAD), maximum photochemical quantum yield of PS II (Fv/Fm), and superoxide dismutase (SOD) were measured and analyzed in tea plant leaves of different treatments, and the correlation between them and the bacterial community was studied.ResultsMicrobial results showed that the diversity of leaf endophytic populations treated with different concentrations of Bacillus mucilaginosus (T1, T2, T3) was higher than that in control group (CK) leaves, and T2 treatment had the highest diversity. The dominant bacterial phyla of all samples were Proteobacteria, Actinobacteriota, Firmicutes, and Bacteroidota. At the phylum level, the relative abundance of Actinobacteriota, Firmicutes, and Bacteroidota in leaves treated with B. mucilaginosus was significantly higher than that in the control. At the genus level, the relative abundance of Paenibacillus, Nocardioides, and Marmoricola in leaves treated with B. mucilaginosus was significantly higher than that in the control. Different concentrations of B. mucilaginosus affected the distribution of leaf endophytic populations. At the level of bacterial function, abundant metabolic functional features were observed, including amino acid transport and metabolism, as well as energy production and conversion, indicating that bacterial metabolism in tea plant leaf samples tends to be vigorous. The treatment with B. mucilaginosus significantly increased the activity of antioxidant enzymes and osmolyte content, promoted the recovery of Fv/Fm in tea plants after low-temperature stress, and improved the resistance of tea leaves to low-temperature stress, thereby promoting recovery.ConclusionsThis study showed that B. mucilaginosus could significantly change the community structure of leaf endophytic populations, and increase antioxidant enzyme activity and osmolyte content in tea plants after low-temperature stress, promoting the rapid recovery of photosynthesis, and thereby benefiting the recovery of tea plant leaves. This study provided a theoretical basis for the application of B. mucilaginosus in practical production and also provided new ideas for the recovery of tea plants exposed to low-temperature stress.
Introduction The particle size characteristics of irregular sediments in the Yangtze River Source Area (YRSA) are pivotal for understanding the mechanical properties of the sedimentary medium.Methods This study utilizes field sediment sampling, laser scanning, laboratory testing, and mathematical statistics to analyze the morphological, geometric, mineralogical, and accumulation characteristics of sediment particles in the region.Results Our findings indicate that sediments in the YRSA have angular edges and deviate from spherical shapes, exhibiting elongated and flatter three-dimensional morphologies. In the experiment, the sliding plate method was used to measure the angle of repose of the sediments, which was found to be 36.7 degrees above water and 35.9 degrees below water. Both values are higher than the typical range for non-plateau regions, indicating reduced sediment mobility. The sediments are composed of fine-grained and coarse-grained soils. The particle size distribution is primarily coarse sand (0.5-2.0 mm), fine gravel (2.0-5.0 mm), and medium gravel (5.0-20.0 mm), with a significant coarsening trend observed over the past six years. The mineral composition, dominated by quartz, feldspar, and heavy minerals, is stable, with approximately 70% of the minerals having a hardness of >= 7 on the Mohs scale. The most abundant trace elements are Ti, Mn, Ba, P, Sr, Zr, and Cl.Discussion This research reveals that the sediment characteristics in the YRSA are markedly different from those of natural sands in non-plateau regions, necessitating a reevaluation of conventional theories and engineering practices for engineering constructions in this area. The insights from this study are profound and practically relevant, illuminating the sediment transport dynamics in alpine river systems and supporting sustainable regional development.
This paper presents an upgraded nonlinear creep consolidation model for VDI soft ground, incorporating a modified UH relation to capture soil creep deformation. Key novelties also include considering linear construction loads, TDP boundary conditions, and Swartzendruber's flow in the small strain consolidation domain. The system was solved using the implicit finite difference method, and numerical solutions were rigorously validated. A parametric analysis reveals that soil viscosity causes abnormal EPP increases under poor drainage conditions during early consolidation. Meanwhile, neglecting the time effect of the secondary consolidation coefficient delayed the overall EPP dissipation process and overestimated the settlement during the middle and late consolidation stages. Furthermore, TDP boundaries, Swartzendruber's flow, and construction processes significantly influence the creep consolidation process but not the final settlement. These findings offer fresh insights into the nonlinear creep consolidation of VDI soft ground, advancing the field.
Saline soils are significantly affected by water-salt phase changes, evaporation, and groundwater during seasonal freezing and thawing. For the study of physical and mechanical properties of saline soils, solubility is an important indicator that varies with temperature. However, there have been very limited computational studies on solubility at low temperatures. The model for calculating the solubility of Na2SO4-NaCl-H2O ternary system under low temperature conditions was constructed in this paper, based on the Pitzer and BET models. Improvements were made to the parameters & empty; and gamma in the Pitzer model, while improvements were made to the parameters c, r, and aw in the BET model. The solubility changes within the range of 273.15 K-373.15 K were calculated and validated by combining them with indoor experiments. It was found that both the improved Pitzer model and BET model accurately predicted relative equilibrium solubility data of the Na2SO4-NaCl-H2O ternary system at temperatures ranging from 273.15 K to 373.15 K. Additionally, compared with the Pitzer model, the BET model had advantages such as easy parameter acquisition and wider application range. The findings from this research hold great significance for understanding the process and patterns of salt analysis during soil freeze-thaw cycles as well as providing a scientific foundation for further comprehension of phase change laws and physical properties related to saline soils.
Study region: The source area of the Yangtze River, a typical catchment in the cryosphere on the Tibet Plateau, was used to develop and validate a distributed hydrothermal coupling model. Study focus: Climate change has caused significant changes in hydrological processes in the cryosphere, and related research has become hot topic. The source area of the Yangtze River (SAYR) is a key catchment for studies of hydrological processes in the cryosphere, which contains widespread glacier, snow, and permafrost. However, the current hydrological modeling of the SAYR rarely depicts the process of glacier/snow and permafrost runoff from the perspective of coupled water and heat transfer, resulting in distortion of simulations of hydrological processes. Therefore, we developed a distributed hydrothermal coupling model, namely WEP-SAYR, based on the WEP-L (Water and energy transfer process in large river basins) model by introducing modules for glacier and snow melt and permafrost freezing and thawing. New hydrological insights for the region: In the WEP-SAYR model, the soil hydrothermal transfer equations were improved, and a freezing point equation for permafrost was introduced. In addition, the glacier and snow meltwater processes were described using the temperature index model. Compared to previously applied models, the WEP-SAYR portrays in more detail glacier/ snow melting, dynamic changes in permafrost water and heat coupling, and runoff dynamics, with physically meaningful and easily accessible model parameters. The model can describe the soil temperature and moisture changes in soil layers at different depths from 0 to 140 cm. Moreover, the model has a good accuracy in simulating the daily/monthly runoff and evaporation. The Nash-Sutcliffe efficiency exceeded 0.75, and the relative error was controlled within +/- 20 %. The results showed that the WEP-SAYR model balances the efficiency of hydrological simulation in large scale catchments and the accurate portrayal of the cryosphere elements, which provides a reference for hydrological analysis of other catchments in the cryosphere.
There is 78 % permafrost and seasonal frozen soil in the Yangtze River's Source Region (SRYR), which is situated in the middle of the Qinghai-Xizang Plateau. Three distinct scenarios were developed in the Soil and Water Assessment Tool (SWAT) to model the effects of land cover change (LCC) on various water balance components. Discharge and percolation of groundwater have decreased by mid-December. This demonstrates the seasonal contributions of subsurface water, which diminish when soil freezes. During winter, when surface water inputs are low, groundwater storage becomes even more critical to ensure water supply due to this periodic trend. An impermeable layer underneath the active layer thickness decreases GWQ and PERC in LCC + permafrost scenario. The water transport and storage phase reached a critical point in August when precipitation, permafrost thawing, and snowmelt caused LATQ to surge. To prevent waterlogging and save water for dry periods, it is necessary to control this peak flow phase. Hydrological processes, permafrost dynamics, and land cover changes in the SRYR are difficult, according to the data. These interactions enhance water circulation throughout the year, recharge of groundwater supplies, surface runoff, and lateral flow. For the region's water resource management to be effective in sustaining ecohydrology, ensuring appropriate water storage, and alleviating freshwater scarcity, these dynamics must be considered.
Innovative powder coating system for hydraulic steel construction Unprotected steel corrodes in the atmosphere, water and soil. In order to ensure structural safety and maintain fatigue strength, steel structures of all kinds must be protected from corrosion. Hydraulic steel structures such as locks, gates, canal bridges, ship lifts and water power plants largely characterize our waterways, coastal fortifications and port facilities. They are exposed to a particularly high level of corrosive attack because, in addition to atmospheric influences such as wind and weather, they are particularly affected by water, constant water changes and aggressive substances such as salts and minerals. Since such constructions and buildings usually represent investments of the century, their preservation, use and operational safety over generations is an economic necessity. But it ' s not just corrosion that poses a problem for hydraulic steel construction; the formation of biofilms and the growth of algae and mussels can also lead to problems that can even lead to a restriction in the functionality of the systems. The newly developed powder coating system prevents both and thus helps to extend maintenance intervals, increase the lifecycle of steel components in hydraulic steel construction and reduces the lifecycle costs. The new powder coating system thus makes an innovative and sustainable contribution to the preservation of structures in hydraulic steel construction.
Thaumatin-like proteins (TLPs), including osmotins, are multifunctional proteins related to plant biotic and abiotic stress responses. TLPs are often present as large multigene families. Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used in both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline-alkaline soils and drought are two major abiotic stress factors significantly affecting the distribution of tropical coastal plants. The expression of stress resistance genes would help to alleviate the cellular damage caused by abiotic stress factors such as high temperature, salinity-alkalinity, and drought. This study aimed to better understand the functions of TLPs in the natural ecological adaptability of T. tetragonoides to harsh habitats. In the present study, we used bioinformatics approaches to identify 37 TtTLP genes as gene family members in the T. tetragonoides genome, with the purpose of understanding their roles in different developmental processes and the adaptation to harsh growth conditions in tropical coral regions. All of the TtTLPs were irregularly distributed across 32 chromosomes, and these gene family members were examined for conserved motifs of their coding proteins and gene structure. Expression analysis based on RNA sequencing and subsequent qRT-PCR showed that the transcripts of some TtTLPs were decreased or accumulated with tissue specificity, and under environmental stress challenges, multiple TtTLPs exhibited changeable expression patterns at short (2 h), long (48 h), or both stages. The expression pattern changes in TtTLPs provided a more comprehensive overview of this gene family being involved in multiple abiotic stress responses. Furthermore, several TtTLP genes were cloned and functionally identified using the yeast expression system. These findings not only increase our understanding of the role that TLPs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant TLP evolution. This study also provides a basis and reference for future research on the roles of plant TLPs in stress tolerance and ecological environment suitability.
Study region: The source region of the Yangtze River in the Qinghai-Tibet Plateau, China. Study focus: In the context of global warming, conducting a comprehensive study on the hydrothermal processes and their influencing factors in the permafrost active layer of the Tibetan Plateau is crucial for gaining a better understanding of the ecohydrological processes in alpine grasslands. In this study, we analyzed differences in soil temperature and humidity change patterns in the active layer of four alpine grassland types in the Totuohe Basin of the Yangtze River source area. We aimed to discuss the influence of vegetation, soil, and other factors on the hydrothermal mechanism of the active layer. The main research results are as follows: (1) Significant differences in the active layer's hydrothermal regime, with higher vegetation cover correlating to lower thaw indices and better moisture conditions. (2) Vegetation and water content strongly influence thermal conditions and active layer thickness. In high-cover alpine meadows, ground surface temperature is lower with a 200 cm active layer, while swamp meadows have a shallowest layer at 160 cm. (3) Deeper active layer moisture is influenced by freezing and thawing, while shallower layers are affected by warm-season precipitation and soil texture. (4) Negative heat fluxes in the topsoil of alpine swamp and high-cover meadows indicate substantial heat release, likely contributing to permafrost preservation due to high active layer water content. New hydrological insights for the region: (1) Vegetation cover significantly influences the thermal and moisture conditions of the active layer, with higher vegetation associated with lower thaw indices and better moisture conditions. (2) Soil moisture distribution within the active layer is controlled by both freeze-thaw cycles and warm-season precipitation, indicating complex interactions between seasonal processes and soil properties.