共检索到 8

Soil-rock mixture is a common geo-material found in natural deposit slopes and various constructions, such as tunnels, hydropower stations, and subgrades. The complex mechanical characteristics of soil-rock mixture arise from its multi-phase compositions and cooperative interactions. This paper investigated the mechanical properties of soil-rock mixture, focusing on the influence of rock content, and soil-rock interface strength was discussed. Specimens with varying rock contents were subjected to uniaxial compression tests. The results indicated that rock content, as a key structural parameter, significantly controls the crack propagation trends. As rock content increases, the initial structure of the soil matrix is damaged, leading to the formation of a weak-strength soil-rock interface. The failure mode transitions from longitudinal cracking to multiple shear fractures. To analyze the strength of the soil-rock interface from a mesoscopic perspective, simulations of soil-rock mixture specimens with irregular rock blocks were conducted using the particle discrete element method (PDEM). At the meso-scale, the specimen with 30% rock content exhibited a complex particle displacement distribution, with differences in the direction and magnitude of displacement between soil and rock particles being critical to the failure modes of the specimen. As the soil-rock interface strength increased from 0.1 to 0.9, the distribution of force chains within the specimen shifted from a centralized to a more uniform distribution, and the thickness of force chains became increasingly uniform. The strength responses of the soil-rock mixture under uniaxial compression condition were discussed, revealing that the uniaxial compression strength (UCS) of soil-rock mixture decreases exponentially with increasing rock content. An estimation formula was developed to characterize the UCS of soil-rock mixture in relation to rock content and interface strength. The findings from both the experiments and simulations can provide valuable insights for evaluating the stability of deposit slopes and other constructions involving soil-rock mixture.

期刊论文 2024-11-01 DOI: 10.3390/app142210485

Loose and uncemented calcareous sand slopes are prone to collapse under rainstorm erosion. In order to improve the erosion resistance stability of slopes, it is crucial to enhance the erosion resistance of calcareous sand. In this study, a new method of cementing calcareous sand with zinc sulfate solution (ZSS) is proposed. The ZSS reinforcement technique can effectively cement calcareous sand, enhance the mechanical properties and help reduce erosion on calcareous sand slopes. A series of laboratory experiments were conducted, including uniaxial compression tests, Brazilian splitting tests, surface penetration tests, microscopic tests, and rainfall scouring tests. The test results show that the uniaxial compressive strength of calcareous sand achieved 8.3 MPa reinforced with ZSS. Microscopic analyses revealed the mechanism of reinforcement, discovering the formation of environmentally friendly compounds such as ZnCO3 and CaSO4 & sdot;2 H2O between calcareous sand particles, which enhanced the soil mechanical properties. The calcareous sand slope reinforced with ZSS forms a hard shell on the slope surface, which effectively improves the erosion resistance of the slope. After being reinforced with a ZSS concentration of 1.0 mol/L, the slope remained stable after 20 min of scouring at a rainfall intensity of 80 mm/h. This method provides a quick solution for reinforcing calcareous sand slopes and holds promising potential for practical engineering applications.

期刊论文 2024-10-11 DOI: 10.1016/j.conbuildmat.2024.138113 ISSN: 0950-0618

To investigate the macroscopic mechanical properties and failure evolution mechanism of desulfurization gypsum-fly ash fluid lightweight soil, a microscale numerical model using PFC2D (Particle Flow Code) was constructed. Uniaxial compression tests were conducted to determine the microscopic parameters of the model, extracting information on the discrete fracture network type, quantity, age, and particle displacement trend. The crack morphology and propagation evolution of desulfurization gypsum-fly ash fluid lightweight soil were explored, and the destructive properties of desulfurization gypsum-fly ash fluid lightweight soil material were evaluated through energy indicators. The research findings suggest that the discrete element numerical model effectively simulates the stress-strain curve and failure characteristics of materials. Under uniaxial compression conditions, microcracks dominated by shear failure occur in the initial loading stage of desulfurization gypsum-fly ash fluid lightweight soil, with a through crack dominated by tensile failure appearing once the load exceeds the peak stress. The dissipated energy evolution in the flow state of desulfurization gypsum-fly ash fluid lightweight soil is relatively gentle, leading to delayed cracking after surpassing the peak stress point.

期刊论文 2024-08-01 DOI: 10.3390/coatings14080968

Extensive experimental studies have demonstrated the time-dependent mechanical behaviors of frozen soil. Nonetheless, limited studies are focusing on the constitutive modeling of the time-dependent stress-strain behaviors of frozen clay soils at different subzero temperatures. The objective of this study is to numerically investigate the time-dependent behavior of frozen clay soils at a temperature range of 0 degrees C to - 15 degrees C. The Drucker-Prager model is adopted along with the Singh-Mitchell creep model to simulate time-dependent uniaxial compression and stress relaxation behaviors of frozen sandy clay soil. The numerical modeling is implemented through the finite element method based on the platform of Abaqus. The constitutive modeling is calibrated by a series of experimental results on laboratory-prepared frozen sandy clay soils, where the strain hardening, the post-peak softening, and stress relaxation behaviors are captured. Our results show that both the rate-dependent model and creep model should be adopted to characterize a comprehensive time-dependent behavior of frozen soils. The rate-dependent stress-strain behaviors heavily rely on the rate- and temperature-dependent hardening functions, where the creep strain provides a very limited contribution. Nevertheless, the creep strain should also be adopted when a long-term analysis or stress relaxation behavior is involved.

期刊论文 2024-07-01 DOI: 10.1007/s10706-024-02760-1 ISSN: 0960-3182

Geological exploration cores obtained from shale gas wells several kilometers deep often show different height-diameter ratios (H/D) because of complex geological conditions (core disking or developed fractures), which makes further standard specimen preparation for mechanical evaluation of reservoirs difficult. In multi-cluster hydraulic fracturing, shale reservoirs between planes of hydraulic fractures with different lengths could be simplified to have different H/D ratios. Discovering the effect of H/D on the mechanical characteristics of shale specimens with different bedding orientations will support mechanical evaluation tests of reservoirs based on disked geological cores and help to optimize multicluster fracturing programs. In this study, we performed uniaxial compression tests and acoustic emission (AE) monitoring on cylindrical Longmaxi shale specimens under five bedding orientations and four H/D ratios. The experimental results showed that both the H/D-dependent mechanical properties and AE parameters demonstrated significant anisotropy. Increasing H/D did not change the uniaxial compressive strength (UCS) evolution versus bedding orientation, demonstrating a V-shaped relationship, but enhanced the curve shape. The stress level of crack damage for the specimens significantly increased with increasing H/D, excluding the specimens with a bedding orientation of 0 degrees. With increasing H/D, the cumulative AE counts of the specimens with each bedding orientation tended to exhibit a stepped jump against the loading time. The proportion of low-average-frequency AE signals (below 100 kHz) in specimens with bedding orientations of 45 degrees and 60 degrees increased to over 70% by increasing H/D, but it only increased to 40% in specimens with bedding orientations of 0 degrees, 30 degrees, and 90 degrees. Finally, an empirical model that can reveal the effect of H/D on anisotropic UCS of shale reservoir was proposed, the anisotropic proportion of tensile and shear failure cracks in specimens under four H/D ratios was classified based on the AE data, and the effect of H/D on the anisotropic crack growth of specimens was discussed. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-07-01 DOI: 10.1016/j.jrmge.2023.11.0411674-7755 ISSN: 1674-7755

The geometry of joints has a significant influence on the mechanical properties of rocks. To simplify the curved joint shapes in rocks, the joint shape is usually treated as straight lines or planes in most laboratory experiments and numerical simulations. In this study, the computerized tomography (CT) scanning and photogrammetry were employed to obtain the internal and surface joint structures of a limestone sample, respectively. To describe the joint geometry, the edge detection algorithms and a three-dimensional (3D) matrix mapping method were applied to reconstruct CT-based and photogrammetry-based jointed rock models. For comparison tests, the numerical uniaxial compression tests were conducted on an intact rock sample and a sample with a joint simplified to a plane using the parallel computing method. The results indicate that the mechanical characteristics and failure process of jointed rocks are significantly affected by the geometry of joints. The presence of joints reduces the uniaxial compressive strength (UCS), elastic modulus, and released acoustic emission (AE) energy of rocks by 37%-67%, 21%-24%, and 52%-90%, respectively. Compared to the simplified joint sample, the proposed photogrammetry-based numerical model makes the most of the limited geometry information of joints. The UCS, accumulative released AE energy, and elastic modulus of the photogrammetry-based sample were found to be very close to those of the CT-based sample. The UCS value of the simplified joint sample (i.e. 38.5 MPa) is much lower than that of the CT-based sample (i.e. 72.3 MPa). Additionally, the accumulative released AE energy observed in the simplified joint sample is 3.899 times lower than that observed in the CT-based sample. CT scanning provides a reliable means to visualize the joints in rocks, which can be used to verify the reliability of photogrammetry techniques. The application of the photogrammetry-based sample enables detailed analysis for estimating the mechanical properties of jointed rocks. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

期刊论文 2024-04-01 DOI: 10.1016/j.jrmge.2023.08.008 ISSN: 1674-7755

This study investigated the performance of unreinforced and geogrid-encased cement-stabilized dredged slurry columns by uniaxial compression tests to simulate the extreme case where the surrounding soil offers no confinement. The objective was to understand the strength characteristics and visualize the deformation damage patterns of the columns with respect to the water content, cement content, length-to-diameter ratio, and geogrid strength. The results show that the unreinforced specimens exhibited strain-softening behavior, whereas geogrid encasement induced strain-hardening, with high-strength geogrids showing superior strain-hardening capacity. Notably, regardless of geogrid strength, encasement enhanced the resistance to deformation and ductility of the columns. Increasing the cement content, reducing the water content, and decreasing the length-to-diameter ratio all contributed to higher peak strength in both unreinforced and geogrid-encased specimens. Geogrid encasement provides confinement that enhances peak strength. The influence of geogrid encasement on peak strength becomes more pronounced at lower cement contents, higher water contents, and higher length-to-diameter ratios. Geogrid encasement also affects failure modes, altering the predominant inclined shear failure observed at the top of unreinforced specimens. Specimens encased with geogrids of higher tensile strength exhibit enhanced integrity and deformation resembling compression strut buckling, with a symmetrically inclined failure trend at the top and bottom.

期刊论文 2024-01-30 DOI: 10.1680/jgein.23.00132 ISSN: 1072-6349

Ground improvement is necessary in many flat areas and landfill sites in Japan because these areas have soft ground and are highly susceptible to serious damage such as long-term consolidation settlement and liquefaction. The deep mixing method (DMM) is an in-situ soil treatment in which native soils or fills are blended with cementitious and/or other materials. Ground treated by DMM has higher strength and lower compressibility than untreated ground. However, there are quality problems in this method due to a condition in which a mixture of soil and materials adheres to and rotates along with the stirring blades without performing efficient mixing. Therefore, our purpose is to improve quality of improved columns produced by the mechanical mixing method using vertical rotary shafts and mixing blades. In this study, five cases of small-scale model experiments were conducted with changing in the blade rotation number, the incident angle of agitating blades, and the agitating blade angle. Strength tests were conducted using unconsolidated samples at different depths to investigate strength distribution, and needle penetration tests were also conducted. From the results, the effects of the blade rotation number, the incident angle, and the agitating blade angle on improvement quality were discussed.

期刊论文 2024-01-01 DOI: 10.1007/978-981-99-9223-2_32 ISSN: 2366-2557
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页