The lateral cyclic bearing characteristics of pile foundations in coastal soft soil treated by vacuum preloading method (VPM) are not well understood. To investigate, static lateral cyclic loading tests were conducted to assess the impact of treatment durations and sealing conditions on pile performance. Results indicated that vacuum preloading significantly improved soil properties, with undrained shear strength (S-u) increasing by up to 36.5 times, especially in shallow layers. Longer treatment durations boosted the ultimate lateral bearing capacity by up to 125%, although the effect decreased with depth, suggesting an optimal duration. Sealing conditions had minimal impact on capacity but affected S-u distribution and pile behaviour. Analysis of p-y curves revealed that longer durations improved soil resistance in shallow layers, while shorter durations provided consistent resistance across depths. Sealed conditions enhanced displacement capacity. The API specification predicted soil resistance accurately for lateral displacements under 0.1D but showed errors for larger displacements. These findings emphasise the need for optimising VPM parameters to enhance pile-soil interaction and lateral cyclic performance. The study offers guidance for applying VPM in soft soil foundation engineering and balancing performance with cost efficiency.
Horizontal drains are gradually introduced to the vacuum preloading method to improve dredged slurries by adding geotextiles to alleviate the blockage in the consolidation process. This study considers the consolidation of slurries enhanced by the vacuum preloading method with geotextile combined horizontal drains based on a double-layered consolidation model. The model approximates geotextile as a special soil layer possessing an equivalent consolidation factor. An analytical solution of the layered consolidation model is obtained using the Laplace transform and the finite Fourier transform method. The effectiveness of the solution is verified by comparing it with the one-dimensional double-layered consolidation solution and the one-dimensional consolidation with a partially permeable boundary. Through comparison with laboratory experiments, the model shows good fitness with the test results in the literature. The influences of related parameters, including the drain arrangement densities, soil parameters, and geotextile parameters, are discussed on average consolidation degree and pore water pressure. The influence mechanism is explained regarding drainage path and vacuum pressure transfer. Findings demonstrate that geotextile facilitates vacuum transfer and promotes soil consolidation, especially when the smaller density of drains' deposition and lower soil permeability are applied.