Some sloping peatlands in northern regions often develop surface microtopographic patterns to maintain their water balance and ecosystem functioning. However, we do not know whether and how spatial patterning would influence the water balance and peat formation of permafrost-affected peatlands in relatively dry regions. Here we used data from the field observations and Unmanned Aerial Vehicle (UAV) survey of a slope peatland at an elevation of around 4800 m in the hinterland of the Qinghai-Tibetan Plateau (QTP) to document and understand the topographic controls of water balance and vegetation growth. Our terrain analysis result shows that the peatland-located on the middle of a hillslope-has a gentle slope of 5.6 degrees +/- 2.5 degrees, while the non-peatland upper has a steep slope of 12 degrees +/- 4.5 degrees. The great upstream catchment area and the presence of shallow impermeable permafrost likely create a saturated condition for peat formation. Our UAV results show obvious spatial patterning of abundant pools and ridges across this peatland, and pool sizes and ridge abundance increase with increasing slopes, suggesting that slope-controlled water flow gradient is the main driver of ridge formation and that ridges is to slow down the runoff. UAV-derived greenness values show a positive relationship with the total pool extent locally (R2 = 0.60) and decrease with increasing distance from the individual pools, suggesting sensitive responses of vegetation growth to surface moisture. Thus, enhanced vegetation growth and likely resultant great peat accumulation immediately around pools potentially further differentiate surface micro-topography, strengthening the pool stability. We conclude that the local slope gradient, surface patterning (pools and ridges) and permafrost interact together to regulate water flow and maintain water balance, which in turn regulate the vegetation growth, peat accumulation and peatland stability. Our study implies that the delicate water balance maintained partly by microtopography is sensitive to climate change-especially potential extreme hydroclimate events-and natural and human-induced disturbances that may modify the surface patterning and weaken the peatland's stability, affecting the carbon sequestration ability of this type of peatlands.
The Tibetan Plateau (TP), also known as the world's Third Pole, is underlain by frozen ground and is highly sensitive to climate change. However, it remains unclear how the variations in soil freeze-thaw could affect vegetation dynamics across the TP. In this study, we adopted the latest datasets for vegetation, climate and soil freeze-thaw in the past two decades to explore the possible impacts of changes in soil freeze-thaw on vegetation greenness and phenology on the TP. According to the satellite-based observations, the TP showed an overall greening trend during 2001-2020, and the growing season length increased significantly at a rate of 3.6 days/ 10a, mainly contributed by the advances of the start of the growing season (2.7 days/10a). Based on ridge regression and partial correlation analysis, air temperature and precipitation were found to be the major dominant factors of vegetation dynamics on the TP, and precipitation played a dominant role in the relatively warm-dry southwestern TP where vegetation browning and spring phenology delays were observed. In the relatively cold regions, earlier soil thaw onset generally facilitated spring phenology, and longer soil thaw duration tended to increase the growing season soil moisture content, which could in turn enhance vegetation greenness. In the relatively warm regions, however, earlier thaw onset and longer thaw duration could possibly exacerbate the growing season water stress and limit vegetation growth. The negative impacts were more evident in the regions with unstable and completely degraded permafrost according to the results in the source region of Yellow and Yangtze rivers. Our findings highlight the spatially varying role of soil freeze-thaw changes in vegetation dynamics, which have important implications for the carbon budget of the TP in a warming future climate as frozen ground continues to degrade.
Our current understanding of semiarid ecosystems is that they tend to display higher vegetation greenness on polar-facing slopes (PFS) than on equatorial-facing slopes (EFS). However, recent studies have argued that higher vegetation greenness can occur on EFS during part of the year. To assess whether this seasonal reversal of aspect-driven vegetation is a common occurrence, we conducted a global-scale analysis of vegetation greenness on a monthly time scale over an 18-year period (2000-2017). We examined the influence of climate seasonality on the normalized difference vegetation index (NDVI) values of PFS and EFS at 60 different catchments with aspect-controlled vegetation located across all continents except Antarctica. Our results show that an overwhelming majority of sites (70%) display seasonal reversal, associated with transitions from water-limited to energy-limited conditions during wet winters. These findings highlight the need to consider seasonal variations of aspect-driven vegetation patterns in ecohydrology, geomorphology, and Earth system models. Plain Language Summary Sunny (equatorial-facing) slopes receive more solar radiation than shady (polar-facing) slopes. A common assumption in water-limited semiarid ecosystems is that this difference in solar radiation results in shady slopes being greener than sunny slopes, because they lose less water to the atmosphere due to evapotranspiration. Some studies have suggested seasonal changes to this pattern, but the lack of a global-scale analysis has prevented a clear understanding of the extent of this phenomenon and its causes. Here, we used an 18-year record of remotely sensed monthly data to compare vegetation activity on opposing slopes in 60 semiarid catchments with different climates from all over the world. Our results show three different patterns: (1) always greener shady slopes; (2) greener shady slopes in summer but greener sunny slopes in winter; and (3) no discernible difference between slopes. Contrary to the common belief that shady slopes are always greener in semiarid landscapes, the majority of the studied sites show a seasonal reversal of this patterns in vegetation greenness. We attribute this contrasting behavior to the timing of precipitation and different growth responses of vegetation types on opposing slopes. At sites having wet winters, sunny slopes benefit more from solar radiation; hence, their vegetation grows more rapidly than that of shady slopes. These findings underline the importance of considering the seasonal variations of vegetation pattern on opposing slopes in ecohydrological, geomorphological, and Earth system models.