Purpose Rubber-based isolation systems produce enormous isolator displacement, requiring large seismic gap and causing excessive residual displacement, which can damage the isolator and it has lack of energy dissipation capability. These can be overcome by incorporating shape memory alloy (SMA) with rubber bearing (SMARB). However, studies were conducted ignoring the effect of soil structure interaction (SSI), which significantly alters seismic responses of isolated buildings due to soil flexibility effect. Methods This study aims to assess the optimal seismic performance of a multistoreyed building isolated with SMARB device subjected to recorded earthquakes using particle swarm optimization algorithm to minimize top storey acceleration of building considering the effect of different types of soil, which is modelled using direct method and the soil is considered linear, elastic, massless and homogeneous. The numerical modelling of SMA is done using Graesser-Cozzarelli model and the responses are evaluated by solving dynamic equation of motion of the combined system, which comprises the superstructure, isolator and soil. Results The effect of SSI reduces top storey acceleration and isolator displacement of the isolated building. The top storey acceleration is reduced by 3.1%, 27.8% and 35.8% and isolator displacement is reduced by 15.2%, 24.9% and 32.0% for hard, medium and soft soil, respectively. Negligible residual displacement is obtained for SMARB system considering SSI effects. Conclusion Among the various isolation devices (rubber bearing, lead rubber bearing and SMARB), SMARB performs significantly better and ignoring the effects of soil typology leads to a severe underestimation of the performance of the isolated building.
Amazon rainforests have many hidden treasures; thus, a balance between mine activities and the environment must be maintained. In the northern region of Brazil, there is a large diversity of metal ore deposits, the exploitation of which requires innovative and sustainable mining operations. Historically, mining operations have caused various environmental issues, such as landscape deterioration, damage to natural structures due to detonations, and soil and water pollution, and have also contributed to CO2 emissions from diesel trucks. Here, to estimate and minimize the operating expenses of a large-scale open-pit iron mine, a mine-to-crusher model was developed. The calibration of the mine-to-crusher model was based on rock fragmentation from the blasting phase through the primary crushing phase from an analysis of pictures of the fragmented pile. A reduction in cost was determined for an optimum 90% passing size (P90). The calibration was performed with technical and economic parameters from 2 years before. For the studied iron ore mine site, an optimum P90 value between 0.29 and 0.31 m was determined.
A tuned liquid damper (TLD) is one of the most economically passive vibration control strategies for controlling the wind-induced vibrations of structures such as wind turbines (WT). The literature on fluid-structure interaction limits the scope of analysis to either the influence of wind on tower, or liquid on tank. Meanwhile, it does not consider the applicability of damper installation inside the tower or even inside the nacelle. This study adopts an integrated experimental and numerical approach to find an applicable TLD configuration to mitigate vibrations of a 5-MW wind turbine considering the mutual effects between wind, tower, and liquid damper. It uses the Ansys Fluent module in the tower's TLD and wind-induced vibrations. It starts with wind load simulation, including the vortex shedding effect. Then, it presents the sloshing water behavior and validates it with an experimental model. Parametric study has been conducted to consider the effect of different mass ratios, frequency ratios, and the influence of soil stiffness on the response on the WT tower. The experimental analysis demonstrates TLD's feasibility in mitigating vibration sufficiently with a 40% displacement reduction. A single TLD with a 4% mass ratio can reduce the lateral deformations by 7.32 and 12.5% of WT with fixed and partially fixed end conditions, respectively. While using a configuration of 3 TLDs with a 12% mass ratio extends the fatigue life by 38% and offers a gain in lateral deformations reduction that reached 48.73 and 71.45% for both fixed and partially fixed end conditions.