This study investigates efficient dehydration and solidification techniques for waste mud generated from loess pile foundations during highway construction in Lanzhou, Northwest China. The waste mud, characterized by high viscosity (85% moisture content) and alkalinity (pH 11.2), poses environmental risks if untreated. Dehydration experiments identified an optimal composite flocculant mixture of 3.5 g polyaluminum chloride (PAC) and 22 mL anionic polyacrylamide (APAM) per 500 mL waste mud, accelerating sedimentation and reducing the supernatant pH to 8.65, compliant with discharge standards. Solidification tests employed a composite curing agent (CG-T1+cement), demonstrating enhanced mechanical properties. The California Bearing Ratio (CBR) of the solidified sediment reached 286%, and the unconfined compressive strength (UCS, 7-day) exceeded 2.0 MPa, meeting roadbed specifications. The combined use of PAC-APAM for dehydration and CG-T1-cement for solidification offers an eco-friendly and economically viable solution for reusing treated waste mud in construction applications, addressing regional challenges in mud disposal and resource recovery.
The treatment, disposal, and resource utilization of waste mud are challenges for engineering construction. This study investigates the road performance of waste mud-solidified soil and explains how solidifying materials influence the strength and deformation characteristics of waste mud. Unconfined compressive strength tests, consolidated undrained triaxial shear tests, resonant column tests, and consolidation compression tests were conducted to evaluate the solidification effect. The test results show that with an increase in cement content from 5 to 9%, the unconfined compressive strength of the waste mud-solidified soil increased by over 100%, the curing time was extended from 3 to 28 days, and the unconfined compressive strength increased by approximately 70%. However, an increase in initial water content from 40 to 60% reduced the unconfined compressive strength by 50%. With the increase of cement content from 5 to 9%, the cohesion and friction angles increased by approximately 78% and 24%, respectively. The initial shear modulus under dynamic shear increased by approximately 38% and the shear strain corresponding to a damping ratio decay to 70% of the initial shear modulus decreased by nearly 11%. The compression coefficient decreased by approximately 55%. Scanning electron microscopy and X-ray diffraction tests showed that a higher cement content led to the formation of more hydration reaction products, especially an increase in the content of AlPO4, which can effectively fill the pores between soil particles, enhance the bonding between soil particles, and form a skeleton with soil particles to improve compactness. Consequently, the strength of the waste mud-solidified soil increased significantly while its compressibility decreased. This study can provide data support for dynamic characteristics of waste mud solidified soil subgrade.