In mid-July 2021, a quasi-stationary extratropical cyclone over parts of western Germany and eastern Belgium led to unprecedented sustained widespread precipitation, nearly doubling climatological monthly rainfall amounts in less than 72 h. This resulted in extreme flooding in many of the Eifel-Ardennes low mountain range river catchments with loss of lives, and substantial damage and destruction. Despite many reconstructions of the event, open issues on the underlying physical mechanisms remain. In a numerical laboratory approach based on a 52-member spatially and temporally consistent high-resolution hindcast reconstruction of the event with the integrated hydrological surface-subsurface model ParFlow, this study shows the prognostic capabilities of ParFlow and further explores the physical mechanisms of the event. Within the range of the ensemble, ParFlow simulations can reproduce the timing and the order of magnitude of the flood event without additional calibration or tuning. What stands out is the large and effective buffer capacity of the soil. In the simulations, the upper soil in the highly affected Ahr, Erft, and Kyll river catchments are able to buffer between about one third to half of the precipitation that does not contribute immediately to the streamflow response and leading eventually to widespread, very high soil moisture saturation levels. In case of the Vesdre river catchment, due to its initially higher soil water saturation levels, the buffering capacity is lower; hence more precipitation is transferred into discharge.
Precipitation comes in various phases, including rainfall, snowfall, sleet, and hail. Shifts of precipitation phases, as well as changes in precipitation amount, intensity, and frequency, have significant impacts on regional climate, hydrology, ecology, and the energy balance of the land-atmosphere system. Over the past century, certain progress has been achieved in aspects such as the observation, discrimination, transformation, and impact of precipitation phases. Mainly including: since the 1980s, studies on the observation, formation mechanism, and prediction of precipitation phases have gradually received greater attention and reached a certain scale. The estimation of different precipitation phases using new detection theories and methods has become a research focus. A variety of discrimination methods or schemes, such as the potential thickness threshold method of the air layer, the temperature threshold method of the characteristic layer, and the near-surface air temperature threshold method, have emerged one after another. Meanwhile, comparative studies on the discrimination accuracy and applicability assessment of multiple methods or schemes have also been carried out simultaneously. In recent years, the shift of precipitation from solid to liquid (SPSL) in the mid-to-high latitudes of the Northern Hemisphere has become more pronounced due to global warming and human activities. It leads to an increase in rain-on-snow (ROS) events and avalanche disasters, affecting the speed, intensity, and duration of spring snow-melting, accelerating sea ice and glacier melting, releasing carbon from permafrost, altering soil moisture, productivity, and phenological characteristics of ecosystems, and thereby affecting their structures, processes, qualities, and service functions. Although some progress has been made in the study of precipitation phases, there remains considerable research potential in terms of completeness of basic data, reliability of discrimination schemes, and the mechanistic understanding of the interaction between SPSL and other elements or systems. The study on shifts of precipitation phases and their impacts will play an increasingly important role in assessing the impacts of global climate change, water cycle processes, water resources management, snow and ice processes, snow and ice-related disasters, carbon emissions from permafrost, and ecosystem safety.
The stable protection of the walls of high-temperature geothermal wells is a challenging issue for sustainably exploiting geothermal resources. However, the cement stone filling layer of the cemented portion of the well deteriorates gradually during geothermal mining due to the dry-wet cycles of the saline geothermal water, reducing the service life of the geothermal well. For this, this paper presented five groups of cement stone cylinders with salt contents of 0%, 1%, 6%, and 11%, which were subjected to heating to 300 degrees C and 1-5 dry-wet cycles. Nuclear magnetic resonance (NMR) and nonmetallic detection were used to test and analyze the porosity and wave velocity. Additionally, the damage evolution induced by dry-wet cycles was captured based on acoustic emission (AE) data. The experimental results indicated that the heating process primarily resulted in mineral and salt crystal expansion, which in turn caused damage. The damage threshold due to the salt content was found to be 6%. The sudden increase in the thermal stress caused by cooling and deterioration of the tensile strength of the cement column were the key factors in the damage during the cooling process. As the number of cycles increased, the accumulated AE energy moved forward and backward, with decreasing and increasing temperature, respectively. The threshold of signal mutation in the heating process is 200 degrees C, and the accumulated AE energy decreases by 11.7%. When the salt content was 0%, 1%, 6% and 11%, the wave velocity decreased by 19%, 27.3%, 35.5% and 35.9%, respectively. This study also proposed a damage model, which could provide theoretical support for long-term health monitoring and safety protection of geothermal wells. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Estimation of evapotranspiration (ETa) change on the Tibetan Plateau (TP) is essential to address the water requirement of billions of people surrounding the TP. Existing studies have shown that ETa estimations on the TP have a very large uncertainty. In this article, we discuss how to more accurately quantify ETa amount and explain its change on the TP. ETa change on the TP can be quantified and explained based on an ensemble mean product from climate model simulations, reanalysis, as well as ground-based and satellite observations. ETa on the TP experienced a significant increasing trend of around 8.4 +/- 2.2 mm (10 a)-1 (mean +/- one standard deviation) during 1982-2018, approximately twice the rate of the global land ETa (4.3 +/- 2.1 mm (10 a)-1). Numerical attribution analysis revealed that a 53.8% TP area with the increased ETa was caused by increased temperature and 23.1% part was due to soil moisture rising, because of the warming, melting cryosphere, and increased precipitation. The projected future increase in ETa is expected to cause a continued acceleration of the water cycle until 2100. (c) 2024 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock-ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are essential for studying climate change, the hydrological cycle, water resource management, and natural disaster mitigation and prevention. However, knowledge gaps, data uncertainties, and other substantial challenges limit comprehensive research in climate-cryosphere-hydrology-hazard systems. To address this, we provide an up-to-date, comprehensive, multidisciplinary review of remote sensing techniques in cryosphere studies, demonstrating primary methodologies for delineating glaciers and measuring geodetic glacier mass balance change, glacier thickness, glacier motion or ice velocity, snow extent and water equivalent, frozen ground or frozen soil, lake ice, and glacier-related hazards. The principal results and data achievements are summarized, including URL links for available products and related data platforms. We then describe the main challenges for cryosphere monitoring using satellite-based datasets. Among these challenges, the most significant limitations in accurate data inversion from remotely sensed data are attributed to the high uncertainties and inconsistent estimations due to rough terrain, the various techniques employed, data variability across the same regions (e.g., glacier mass balance change, snow depth retrieval, and the active layer thickness of frozen ground), and poor-quality optical images due to cloudy weather. The paucity of ground observations and validations with few long-term, continuous datasets also limits the utilization of satellite-based cryosphere studies and large-scale hydrological models. Lastly, we address potential breakthroughs in future studies, i.e., (1) outlining debris-covered glacier margins explicitly involving glacier areas in rough mountain shadows, (2) developing highly accurate snow depth retrieval methods by establishing a microwave emission model of snowpack in mountainous regions, (3) advancing techniques for subsurface complex freeze-thaw process observations from space, (4) filling knowledge gaps on scattering mechanisms varying with surface features (e.g., lake ice thickness and varying snow features on lake ice), and (5) improving and cross-verifying the data retrieval accuracy by combining different remote sensing techniques and physical models using machine learning methods and assimilation of multiple high-temporal-resolution datasets from multiple platforms. This comprehensive, multidisciplinary review highlights cryospheric studies incorporating spaceborne observations and hydrological models from diversified techniques/methodologies (e.g., multi-spectral optical data with thermal bands, SAR, InSAR, passive microwave, and altimetry), providing a valuable reference for what scientists have achieved in cryosphere change research and its hydrological effects on the Third Pole.
Reservoir water fluctuation is the key factor affecting the stability of reservoir landslides. Existing research on the evolution of landslides under cyclic reservoir water fluctuations is limited. However, further research is needed focusing on the evolution of the first-order natural frequency of reservoir landslides. In this study, model tests were conducted to investigate the evolution of the stress, displacement, inclination angle and first-order natural frequency of reservoir landslides under different rates of water level fluctuations during cyclic reservoir water fluctuations. The tests demonstrated that cyclic fluctuations in the reservoir water level resulted in oscillatory increases in the pore water pressure and soil pressure; while, the effective stress exhibited an oscillatory decrease, leading to a reduction in the landslide stability. The landslide displacement and inclination angle exhibited periodic increases, without distinct stages of initial deformation, uniform deformation, or accelerated deformation. Regarding landslide failure below the water surface, the inclination angle was more sensitive than the displacement. Changes in the inclination angle preceded changes in the displacement, making this approach highly suitable for early warning of reservoir landslide instability. Before the occurrence of landslide failure, the development and connection of cracks led to fragmentation of the sliding mass into multiple smaller blocks with reduced masses, resulting in a drastic increase in the first-order natural frequency of the landslide. Changes in the first-order natural frequency preceded changes in the inclination angle and displacement, rendering this approach very suitable for early warning of reservoir landslides.
Humidity is a basic and crucial meteorological indicator commonly measured in several forms, including specific humidity, relative humidity, and absolute humidity. These different forms can be inter-derived based on the saturation vapor pressure (SVP). In past decades, dozens of formulae have been developed to calculate the SVP with respect to, and in equilibrium with, liquid water and solid ice surfaces, but many prior studies use a single function for all temperature ranges, without considering the distinction between over the liquid water and ice surfaces. These different approaches can result in humidity estimates that may impact our understanding of surface-subsurface thermal-hydrological dynamics in cold regions. In this study, we compared the relative humidity (RH) downloaded and calculated from four data sources in Alaska based on five commonly used SVP formulas. These RHs, along with other meteorological indicators, were then used to drive physics-rich land surface models at a permafrost-affected site. We found that higher values of RH (up to 40 %) were obtained if the SVP was calculated with the over-ice formulation when air temperatures were below freezing, which could lead to a 30 % maximum difference in snow depths. The choice of whether to separately calculate the SVP over an ice surface in winter also produced a significant range (up to 0.2 m) in simulated annual maximum thaw depths. The sensitivity of seasonal thaw depth to the formulation of SVP increases with the rainfall rate and the height of above-ground ponded water, while it diminishes with warmer air temperatures. These results show that RH variations based on the calculation of SVP with or without over-ice calculation meaningfully impact physicallybased predictions of snow depth, sublimation, soil temperature, and active layer thickness. Under particular conditions, when severe flooding (inundation) and cool air temperatures are present, care should be taken to evaluate how humidity data is estimated for land surface and earth system modeling
Study region: Upper Yellow River Basin (UYRB), China. Study focus: We provide a comprehensive overview of the changes in the natural social binary water cycle system in the UYRB from the perspectives of the atmosphere, hydrosphere, cryosphere, biosphere, and human society by summarizing previous research results. New hydrological insight for the region: Since the 1980s, the continuous temperature rise led to permafrost thawing, resulting in a decrease in runoff and an increase in groundwater in the UYRB. The ecological protection and high-quality development of human society continuously increase the demand for water resources. Especially the runoff of the river in the human gathering area has significantly decreased and there has been an overexploitation of groundwater, resulting in a serious shortage of water resources. The future water supply and demand situation in the UYRB will be more severe. However, the current understanding of the natural social binary water cycle in the Upper Yellow River Basin is still insufficient, which seriously limits the high-quality development of human society in the UYRB. Among them, some erroneous conclusions can even provide misleading information for policy-making and cause serious manpower and resources loss. Natural social binary water cycle is still in initial stage in the UYRB, that is reflected in a lot of contradictions and shortcomings in past research. We propose four feasible research directions to comprehensively promote hydrometeorological research, providing effective guidance for the formulation of high-quality development policies in the UYRB.
Managing water is a top social and economic responsibility and is expected to become even more critical as climate change, in addition to other human activities, alters water availability and quality. Robust indicators reflecting the effects of climate change on the US and global water cycles are needed in order to appropriately manage water resources. Here, we describe a suite of seventeen water cycle and management indicators, which are based on synthesis of available datasets. These indicators include average and heavy precipitation, standardized precipitation index, annual, 7-day low and 3-day high streamflow volume, streamflow timing, snow cover, snow water equivalent, groundwater level, lake water temperature, stream water temperature, dissolved oxygen, salinity, Palmer Drought Severity Index, water withdrawals, and water use. We also identify three indicators that could be included in the suite of water cycle and management indicators with some additional, directed work: snowfall, evapotranspiration, and soil moisture. Our conceptual framework focuses on known water cycle changes in addition to potential effects on management and addresses water quantity and quality, as well as water use and related interactions with freshwater ecosystems, societal impacts, and management. Water cycle indicators are organized into three categories: (1) hydrologic processes, (2) water quality processes, and (3) water quality and quantity impacts. Indicators described here are recommended to serve as critical references for periodic climate assessments. As such, these indicators support analyses of the effects of global change on the natural environment, agriculture, energy, and water resources, among other sectors. Additionally, we identify research gaps and needs that can be addressed to advance the development of future indicators.
The Qinghai-Tibet Plateau (QTP), also often called the Third Pole, is considered the Asian Water Tower because it is the source of many major Asian rivers. The environmental change on the QTP can affect the climate system over the surrounding area, and the changes in glacier and river streamflow on the QTP will lead to cascading impacts in downstream area where billions of people live. This paper reviews the hydrological observations and streamflow changes of the major Asian rivers originating from the QTP. From the 1950s to the beginning of the 21st century, streamflow on the QTP overall shows large interannual variations but no significant trends. The monthly mean streamflows during the flooding seasons are the largest in the 1960s for the outlet stations on the QTP. Annual streamflow in the source region of the Yellow River decreased while that in the source region of the Yangtze River increased slightly. No significant trends of annual streamflow have been reported for the other river source regions. The mean streamflows during peak season are relatively large in the 2000s at the river source region (upper reaches) of most rivers on the QTP. An increasing trend of streamflow in spring has been found in the upper reaches of the Yellow River, the Lancang River, the Tuotuo River (of the Yangtze River), and the Lhasa River (of the Yarlung Zangbo River). The largest month of streamflow often appears in July for most stations, but in August at the Lhasa and Nuxia stations which are located in the Yarlung Zangbo River. Streamflow changes on the QTP could be mainly attributed to changes in snow and ice, as little influence from direct human activities were found. However, the examination of the streamflow changes largely relies on the hydrological observations. So far, due to data unavailability, we are still unclear about the long-term change in the streamflow on the QTP, especially the changes in recent years. The changes in ice and snow pack on the QTP could have significant impact on the downstream water resources and ecosystem. As more water resources have been generated from ice/snow melting, from a long-term perspective, water resources would be reduced along with shrinking and disappearing glaciers. Hydrological projections under future climate change suggest that streamflow in most river source regions would increase along with precipitation and increases in ice/snow melting, and hydrological extremes such as flooding would occur more frequently. Large uncertainties across Generic Circulation Models (GCMs) and hydrological models have been found in future projections of streamflow on the QTP. Reduction of ice/snow melting would aggravate the water stress conditions for both the ecosystem and human society on the QTP and its downstream areas. Sparse hydrometeorological observations in the past, particularly in the remote region of the QTP, are a major limiting factor to studies on streamflow change and its impacts. Further efforts are urgently needed to combine the advanced observation and modeling technologies to improve the observation and simulation capabilities of the water cycle over the QTP, and to provide scientific and technological support for coping with the accelerated ice/snow melting, increasing hydrological extremes and their impacts over the QTP.