Early water stress detection is important for water use yield and sustainability. Traditional methods using the Internet of Things (IoT), such as soil moisture sensors, usually do not provide timely alerts, causing inefficient water use and, in some cases, crop damage. This research presents an innovative early water stress detection method in lettuce plants using Thermal Infrared (TIR) and RGB images in a controlled lab setting. The proposed method integrates advanced image processing techniques, including background elimination via Hue-Saturation- Value (HSV) thresholds, wavelet denoising for thermal image enhancement, RGB-TIR fusion using Principal Component Analysis (PCA), and Gaussian Mixture Model (GMM) clustering to segment stress regions. The leaves stressed areas annotated in the RGB image through yellow pseudo-coloring. This approach is predicated on the fact that when stomata close, transpiration decreases, which causes an increase in the temperature of the affected area. Experimental results reveal that this new approach can detect water stress up to 84 h earlier than conventional soil humidity sensors. Also, a comparative analysis was conducted where key components of the proposed hybrid framework were omitted. The results show inconsistent and inaccurate stress detection when excluding wavelet denoising and PCA fusion. A comparative analysis of image processing performed on a single- board computer (SBC) and through cloud computing over 5 G showed that SBC was 8.27% faster than cloud computing over a 5 G connection. The proposed method offers a more timely and accurate identification of water stress and promises significant benefits in improving crop yield and reducing water usage in indoor farming.
Among the abiotic stresses, water stress is a key factor that limits agricultural productivity worldwide by reducing crop yield through numerous biochemical and physiological disruptions. The use of nanomaterials in commercially available products is rapidly expanding, with significant applications in agriculture and phytoremediation. Current advancements in nanotechnology have introduced iron nanoparticles (Fe-NPs) as a promising approach to enhance crop resilience against stress conditions. Iron (Fe) plays a critical role in photosynthesis, enzyme activation, chlorophyll synthesis, and oxidative stress management, which are pivotal to plant response against water stress. Due to high surface area, small size, and controlled reactivity, Fe-NPs exhibit exceptional advantages over traditional Fe sources, viz., improved bioavailability and nutrient uptake. The current review explores Fe-NP's potential to mitigate the adverse effects of water stress in crop plants by activating various beneficial mechanisms, including improvement in antioxidant defence, osmotic adjustment, and modulating stress related to phytohormones. Particularly, Fe-NPs improve water use efficiency (WUE) and root development, facilitating water and nutrient uptake under stress conditions. Moreover, Fe-NPs assist in antioxidant enzyme regulation, which reduces the accumulation of reactive oxygen species (ROS), thereby reducing oxidative damage and sustaining the metabolic activities of plants under limited water availability. However, FeNP use in agriculture poses potential health and environmental risks, including water and soil contamination, soil microbial alteration, and residues in edible crop plants, which require careful consideration. Furthermore, Fe-NP effectiveness may vary depending on factors, viz., size of nanoparticles (NPs), concentration, method of application, and crop type. The paper concludes by discussing potential research avenues, highlighting the necessity of sustainable application methods, optimal Fe-NP formulations, and thorough environmental effect evaluations. Fe-NPs are a promising element in creating next-generation, nano-enabled farming techniques meant to increase crop resistance to water stress, which could ultimately improve food security in the face of a changing climate.
Water scarcity has affected much of Chile for the past 15 years, and Amelichloa caudata, a native species adapted to arid conditions, may offer a solution. The hypothesis of this study is that both acetylsalicylic acid (ASA) and biosolids (BSs) can positively influence plant growth under water stress. This study assessed the effects of ASA and BSs on edaphic, physiological, biochemical, and productive parameters of A. caudata under water scarcity conditions. Results showed that both treatments enhanced biomass production, plant height, leaf number, and canopy weight. ASA improved water retention, mitigating water stress effects and leading to biomass levels comparable to controls. In contrast, BSs did not show significant benefits and had the lowest biomass values under all conditions. The highest root dry weight was observed in water-restricted plants, while ASA-treated plants had lower malondialdehyde (MDA) levels, indicating reduced oxidative stress. However, BS treatment increased MDA levels, suggesting more severe oxidative damage. Despite improvements in water retention, high salt concentrations in BSs may limit their effectiveness and further research is required to optimize application rates.
Grapevines are subjected to many physiological and environmental stresses that influence their vegetative and reproductive growth. Water stress, cold damage, and pathogen attacks are highly relevant stresses in many grape-growing regions. Precision viticulture can be used to determine and manage the spatial variation in grapevine health within a single vineyard block. Newer technologies such as remotely piloted aircraft systems (RPASs) with remote sensing capabilities can enhance the application of precision viticulture. The use of remote sensing for vineyard variation detection has been extensively investigated; however, there is still a dearth of literature regarding its potential for detecting key stresses such as winter hardiness, water status, and virus infection. The main objective of this research is to examine the performance of modern remote sensing technologies to determine if their application can enhance vineyard management by providing evidence-based stress detection. To accomplish the objective, remotely sensed data such as the normalized difference vegetation index (NDVI) and thermal imaging from RPAS flights were measured from six commercial vineyards in Niagara, ON, along with the manual measurement of key viticultural data including vine water stress, cold stress, vine size, and virus titre. This study verified that the NDVI could be a useful metric to detect variation across vineyards for agriculturally important variables including vine size and soil moisture. The red-edge and near-infrared regions of the electromagnetic reflectance spectra could also have a potential application in detecting virus infection in vineyards.
The investigation of the response mechanisms of Cyperus esculentus to water and salt stresses is crucial for the enhancement of the productivity of saline soils. Previous studies have indicated that plant hormones, antioxidant systems, and osmoregulation may contribute to the stabilization of yield. However, the contributions and interactions of these mechanisms remain poorly understood under combined water and salt stress in natural environments. A dual-factor (salt and water) orthogonal test was used to investigate the growth and biochemical responses of C. esculentus, under combined salt and water stress in a field experiment conducted on a typical saline area in northern China. The findings reveal that C. esculentus adjusted its biomass allocation strategies and activated hormone responses, antioxidant system, and osmoregulation mechanisms to maintain stable yield. Due to the negative synergism when salt and water stress coexist, the homogeneous limitations of both are weakened. Thus, the key to maintaining yields under combined water and salt stress may depend on indirectly enhancing tolerance to oxidative damage through abscisic acid, rather than focusing on accumulating low molecular weight osmoregulants and antioxidant enzymes to directly alleviate homogeneous limitations. Also, under combined salt and water stress, insufficient irrigation may have a greater impact on morphological characteristics than high salinity. The above results contribute to a deeper understanding of the process of adapting C. esculentus to combined salt and water stress.
Walnut (Juglans regiaL.), an important economic forest worldwide, grows in mountainous areas prone to soil drought, which reduces its growth and yield. This study aimed to analyze whether Serendipita indica, a culturable endophytic fungus, colonizes walnut roots, hence improving walnut growth and resistance to drought stress. A high density of chlamydospores was observed within the cortical cells of S. indica-colonized roots, with root colonization ranged from 58.3 to 79.1%, as well as a significant inhibition under drought versus non-drought. Drought treatment suppressed aboveground performance and root morphology variables, while S. indica significantly boosted them. Inoculation with S. indica also significantly increased leaf nitrogen balance index and betaine levels under drought. In leaf mitochondria, drought treatment led to increased levels of hydrogen peroxide (H2O2) and superoxide anion radicals (O-2(center dot-)), with greater increases observed in uninoculated plants than in inoculated plants. However, inoculation with S. indica significantly decreased H2O2 and O-2(center dot-) levels in walnut leaves, with inoculated plants experiencing a greater substantial decrease than uninoculated plants. Drought treatment and S. indica collectively significantly increased leaf superoxide dismutase and catalase activities in mitochondria, allowing inoculated plants to maintain low oxidative damage by decreasing malondialdehyde levels. S. indica also boosted leaf juglone levels by promoting beta-glucosidase activity under drought conditions. In conclusion, S. indica is a helpful endophytic fungus for increasing walnut growth and tolerance to drought by activating antioxidant defenses in mitochondria, which presents a promising pathway for sustainable agroforestry practices.
Heavy metal contamination increases plant susceptibility to both biotic and abiotic stresses. However, the comprehensive impact of heavy metal pollution on plant hydraulics, which is crucial for plant productivity, and the interaction between heavy metal stress and environmental factors on plant health are not yet fully understood. In this study, we investigated the effects of cadmium exposure on plant-water relations and hydraulics of Solanum lycopersicum L., cultivar Piccadilly. Particular attention was given to leaf hydraulic conductance (KL) in response to cadmium pollution and dehydration. Cadmium exposure exhibited negligible impacts on tomato productivity but resulted in significant differences in pressure-volume derived traits. Leaves and roots of Cd-treated plants showed reduced wall stiffness compared to control samples. However, Cd-treated leaves had a less negative turgor loss point (Psi tlp), whereas Cd-treated roots exhibited more negative Psi tlp values due to lower osmotic potential at full turgor compared to control samples. Leaves and root cells of Cd-treated plants showed higher values of saturated water content compared to control plants, along with a distinct mineral profile between the two experimental groups. Despite similar leaf water potential thresholds for 50% and 80% loss of KL in control and cadmium-treated leaves, plants grown in cadmium-polluted soil showed higher leaf cell damages even under well watered conditions. This, in turn, affected the plant ability to recover from drought upon rehydration by compromising cell rehydration ability. Overall, the present findings suggest that under conditions of low water availability, cadmium pollution increases the risk of leaf hydraulic failure.
Nitrogen deposition and drought significantly influence plant growth and soil physicochemical properties. This study investigates the effects of nitrogen deposition and water stress on the growth and physiological responses of Quercus dentata, and how these factors interact to influence the overall productivity. Two-year-old potted seedlings were selected to simulate nitrogen deposition and water stress. Nitrogen was applied at rates of 0 kgha-1year-1 (N0) and 150 kgha-1year-1 (N150). The levels of water stress corresponded to 80% (W80), 50% (W50), and 20% (W20) of soil saturation moisture content. High nitrogen (N150) significantly increased stem elongation and stem diameter by enhancing photosynthetic parameters, including P n (W80) and G s (W50), and maintained higher water use efficiency. Under drought conditions, nitrogen enhanced leaf water content, stabilized electrical conductivity, regulated antioxidant enzyme activity, and increased the accumulation of proline. However, under severe drought, nitrogen did not significantly improve biomass, highlighting the critical role of water availability. Additionally, increased nitrogen levels enhanced soil enzyme activity, facilitated the uptake of crucial nutrients like K and Zn. Mantel tests indicated significant correlations between soil enzyme activity, water use efficiency, and leaf Fe content, suggesting that nitrogen deposition altered nutrient uptake strategies in Q. dentata to sustain normal photosynthetic capacity under water stress. This study demonstrates that nitrogen deposition substantially enhances the growth and physiological resilience of Q. dentata under W50 by optimizing photosynthetic efficiency, water use efficiency, and nutrient uptake. However, the efficacy of nitrogen is highly dependent on water availability, highlighting the necessity of integrated nutrient and water management for plant growth.
The soil water and nitrogen (N) levels are the important factors affecting turfgrass growth. However, the impact of the water-N interaction on tall fescue (Festuca arundinacea Schreb) in terms of the N metabolism and plant morphology remains uncertain. Therefore, the objective of this study was to investigate the impacts of different N and water levels on the physiological and morphological responses of tall fescue. The experiment was designed with N (N-0, N-2, and N-4 representing N application rates of 0, 2, and 4 g m(-2), respectively) and irrigation [W-1, W-2, W-3, W-4, and W-5 representing field water capacities (FWCs) of 90 similar to 100%, 75 similar to 85%, 60 similar to 70%, 45 similar to 55%, and 30 similar to 40%, respectively] treatments, and the relevant indexes of the soil water content and soil NH4+-N and NO3--N levels as well as the physiology and morphology of the tall fescue were determined. The results demonstrated significant changes in the contents of soil water (SWC) and N and the physiological and morphological indexes, except for the enzymes related to N metabolism, including nitrite reductase (NiR), glutamate dehydrogenase (GDH), and glutamate synthetase (GOGAT). The water stress significantly enhanced the water and N use efficiencies (WUE and NUE), except the NUE in the W-5 treatment. The N stress significantly influenced the SWC, soil NO3--N content, and physiological and morphological indexes, excluding malondialdehyde, NiR, GOGAT, and above- (AGB) and below-ground biomass, resulting in the increased WUE and NUE. The application of a low N rate effectively alleviated the detrimental impacts of water stress on the SWC and glutamine synthetase activity. In conclusion, W-2 and N-2 are deemed more appropriate treatments for the low-maintenance measures of tall fescue turf. Among all the treatments, N2W2 is recommended as the optimal water-N interaction treatment due to its ability to conserve resources while still ensuring high turf quality.
The CmXTH11 gene, a member of the XTH (xyloglucan endotransglycosylase/hydrolase) family, plays a crucial role in plant responses to environmental stress. In this study, we heterologously expressed the melon gene CmXTH11 in Arabidopsis to generate overexpressing transgenic lines, thereby elucidating the regulatory role of CmXTH11 in water stress tolerance. Using these lines of CmXTH11 (OE1 and OE2) and wild-type (WT) Arabidopsis as experimental materials, we applied water stress treatments (including osmotic stress and soil drought) and rewatering treatments to investigate the response mechanisms of melon CmXTH11 in Arabidopsis under drought stress from a physiological and biochemical perspective. Overexpression of CmXTH11 significantly improved root growth under water stress conditions. The OE lines exhibited longer roots and a higher number of lateral roots compared to WT plants. The enhanced root system contributed to better water uptake and retention. Under osmotic and drought stress, the OE lines showed improved survival rates and less wilting compared to WT plants. Biochemical analyses revealed that CmXTH11 overexpression led to lower levels of malondialdehyde (MDA) and reduced electrolyte leakage, indicating decreased oxidative damage. The activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), were significantly higher in OE lines, suggesting enhanced oxidative stress tolerance. The CmXTH11 gene positively regulates water stress tolerance in Arabidopsis by enhancing root growth, improving water uptake, and reducing oxidative damage. Overexpression of CmXTH11 increases the activities of antioxidant enzymes, thereby mitigating oxidative stress and maintaining cellular integrity under water deficit conditions. These findings suggest that CmXTH11 is a potential candidate for genetic improvement of drought resistance in crops.