共检索到 3

Water temperature extremes can pose serious threats to the aquatic ecosystems of mountain rivers. These rivers are influenced by snow and glaciermelt, which change with climate. As a result, the frequency and severity of water temperature extremes may change. While previous studies have documented changes in non-extreme water temperature, it is yet unclear how extreme water temperatures change in a warming climate and how their hydro-meteorological drivers differ from those of non-extremes. This study aims to assess temporal changes and spatial variability in water temperature extremes and enhance our understanding of the driving processes across European mountain rivers in the current climate, at both a regional and continental scale. First, we describe the characteristics of extreme events and explore their relationships with catchment characteristics. Second, we assess trends in water temperature extremes and compare them with trends in mean water temperature. Third, we use random forest models to identify the main driving processes of water temperature extremes. Last, we conduct a co-occurrence analysis to examine the relationship between water temperature extremes and hydro-climatic extremes. Our results show that mean water temperature has increased by +0.38 +/- 0.14 ${+}0.38\pm 0.14$degrees C per decade, leading to more extreme events at high elevations in spring and summer. While non-extreme water temperatures are mainly driven by air temperature, water temperature extremes are also importantly influenced by soil moisture, baseflow, and meltwater. Our study highlights the complexity of water temperature dynamics in mountain rivers at the regional and continental scale, especially during water temperature extremes.

2024-10-01 Web of Science

Groundwater (GW) is sensitive to climate change (CC), and the effects have become progressively more evident in recent years. Many studies have examined the effects of CC on GW quantity. Still, there is growing interest in assessing the qualitative impacts of CC, especially on GW temperature (GWT), and the consequences of these impacts. This study aimed to systematically review recently published papers on CC and GWT, determine the impacts of CC on GWT, and highlight the possible consequences. The Scopus and Web of Science databases were consulted, from which 144 papers were obtained. After an initial screening for duplicate papers, a second screening based on the titles and abstracts, and following an analysis of topic applicability to this subject after examining the full text, 44 studies were included in this review. The analysed scientific literature, published in 29 different journals, covered all five continents from 1995 to 2023. This review indicated that the subject of GWT variations due to CC is of global interest and has attracted significant attention, especially over the past two decades, with many studies adopting a multidisciplinary approach. A general increase in GWT was noted as a primary effect of CC (especially in urban areas); furthermore, the implications of this temperature increase for contaminants and GW-dependent ecosystems were analysed, and various applications for this increase (e.g. geothermal) were evaluated. This review highlights that GWT is vulnerable to CC and that the consequences can be serious and worthy of further investigation.

2024-03-30 Web of Science

Soil temperatures, water temperatures, and weather parameters were monitored at a variety of locations in the vicinity of King Sejong station, King George Island, Antarctica, during summer 2010-2011. Thermal characteristics of soil and water were analysed using time-series analyses, apparent thermal diffusivity (ATD), and active layer thickness. The temperatures of pond water and nearby seawater showed the distinctive diurnal variations and correlated strongly with solar radiation (r = 0.411-0.797). Soil temperature (0.1-0.3 m depth) also showed diurnal fluctuations that decreased with depth and were directly linked to air temperature (r = 0.513-0.783) rather than to solar radiation; correlation decreased with depth and the time lag in the response increased by 2-3 hours per 0.1 m of soil depth. Owing to the lack of snow cover, summertime soil temperature was not decoupled from air temperature. Estimated ATD was between 0.022 and 29.209 mm2/sec, showed temporal and spatial variations, and correlated strongly with soil moisture content. The maximum estimated active layer thickness in the study area was a 41-70 cm, which is consistent with values reported in the previous work.

2016-08-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页