共检索到 226

Ensuring the accuracy of free-field inversion is crucial in determining seismic excitation for soil-structure interaction (SSI) systems. Due to the spherical and cylindrical diffusion properties of body waves and surface waves, the near-fault zone presents distinct free-field responses compared to the far-fault zone. Consequently, existing far-fault free-field inversion techniques are insufficient for providing accurate seismic excitation for SSI systems within the near-fault zone. To address this limitation, a tailored near-fault free-field inversion method based on a multi-objective optimization algorithm is proposed in this study. The proposed method establishes an inversion framework for both spherical body waves and cylindrical surface waves and then transforms the overdetermined problem in inversion process into an optimization problem. Within the multi-objective optimization model, objective functions are formulated by minimizing the three-component waveform differences between the observation point and the delayed reference point. Additionally, constraint conditions are determined based on the attenuation property of propagating seismic waves. The accuracy of the proposed method is then verified through near-fault wave motion characteristics and validated against real downhole recordings. Finally, the application of the proposed method is investigated, with emphasis on examining the impulsive property of underground motions and analyzing the seismic responses of SSI systems. The results show that the proposed method refines the theoretical framework of near-fault inversion and accurately restores the free-field characteristics, particularly the impulsive features of near-fault motions, thereby providing reliable excitation for seismic response assessments of SSI systems.

期刊论文 2025-11-01 DOI: 10.1016/j.soildyn.2025.109567 ISSN: 0267-7261

Moderate-size earthquakes, and the presence of water saturated soil in the near surface can trigger the liquefaction geohazard causing buildings to settle / tilt or collapse, damaging bridges, dams, and roads. A number of paleo-seismic research have focused on the Himalayan area as a potential site for liquefaction. The present study site is in the south of the tectonically active Himalayan foothills and lies in earthquake Seismic Zone III. Therefore, the region can experience earthquakes from nearby regions and can potentially damage civil infrastructures due to liquefaction. The objective of this paper is to determine the susceptibility of alluvial soil deposits to liquefaction for seismic hazard and risk mitigation. Liquefaction geohazard study of alluvial deposits was carried out using shear wave velocity (Vs) profiling. Preliminary assessment of the soil is made by building the average shear wave velocity map up to 30 m depth (Vs30) and by constructing the corrected shear wave velocity (V-s1) maps. It was observed from the Vs30 map that a major portion of the studied area lies in Site Class CD and only a small portion lies in Site Class D. Moreover, it is also noticed from the V(s1 )map that a smaller of the area has V(s1 )lower than the upper limit of V-s1(& lowast; )(215 m/s) below which liquefaction may occur. The region showing lower values of V(s1 )is further examined for liquefaction hazard as per the guidelines given by Andrus et al. (2004). Resistance of the soil to liquefaction, stated as cyclic resistance ratio (CRR), and the magnitude of cyclic loading on the soil induced by the earthquake shaking, stated as cyclic stress ratio (CSR) are computed for the area. Several maps of factor of safety (FS) for different depths are prepared by taking the ratio of CSR and CRR. When FS < 1, the soil is considered prone to liquefaction. Furthermore, susceptibility of soil to liquefaction against different peak horizontal ground surface acceleration (PHGSA) and varying depth of water table is also evaluated in terms of factor of safety. It is observed from this study that for lower levels of PHGSA (up to 0.175 g) the soil can be considered safe. However, the soil becomes more vulnerable to liquefaction when PHGSA is above 0.175 g and with rising water table. The comparison of the factor of safety (FS) obtained using the SPT-N method and the Vs-derived approach shows consistent results, with both methods confirming the absence of liquefaction in the studied soil layers.

期刊论文 2025-10-01 DOI: 10.1016/j.jappgeo.2025.105818 ISSN: 0926-9851

A utility tunnel is an infrastructure that consolidates multiple municipal pipeline systems into a shared underground passage. As long linear structures inevitably cross different soils, this paper aims to accurately assess the seismic damage to a shallow-buried utility tunnel in a non-homogeneous zone by employing a viscous-spring artificial boundary and deriving the corresponding nodal force equations. The three-dimensional model of the utility tunnel-soil system is established using finite element software, and a plug-in is developed to simulate the three-dimensional oblique incidence of SV waves with a horizontal non-homogeneous field. In this study, the maximum interstory displacement angle of the utility tunnel is used as the damage indicator. Analysis of structural vulnerability based on IDA method using PGA as an indicator of seismic wave intensity, which considers the angle of oblique incidence of SV waves, the type of seismic waves, and the influence of the nonhomogeneous field on the seismic performance of the utility tunnel. The results indicate that the failure probability of the utility tunnel in different soil types increases with the incident angle and PGA. Additionally, the failure probability under the pulse wave is higher than that under the non-pulse wave; Particular attention is given to the states of severe damage (LS) and collapse (CP), particularly when the angle of incidence is 30 degrees and the PGA exceeds 0.6g, conditions under which the probability of failure is higher. Additionally, the failure probability of the non-homogeneous zone is greater than that of sand and clay; the maximum interlayer displacement angle increases with the incident angle, accompanied by greater PGA dispersion, indicating the seismic wave intensity. The maximum inter-layer displacement angle increases with the incident angle, and the dispersion of the seismic wave intensity indicator (PGA) becomes greater. This paper proposes vulnerability curves for different working conditions, which can serve as a reference for the seismic design of underground structures.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109537 ISSN: 0267-7261

This study presents a novel micromorphic continuum model for sand-gravel mixtures with low gravel contents, which explicitly accounts for the influences of the particle size distribution, gravel content, and fabric anisotropy. This model is rigorously formulated based on the principle of macro-microscopic energy conservation and Hamilton's variational principle, incorporating a systematic analysis of the kinematics of coarse and fine particles as well as macro-microscopic deformation differentials. Dispersion equations for plane waves are derived to elucidate wave propagation mechanisms. The results demonstrate that the model effectively captures normal dispersion characteristics and size-dependent effects on wave propagation in these mixtures. In long-wavelength regimes, wave velocities are governed by macroscopic properties, whereas decreasing wavelengths induce interparticle scattering and multiple reflections, attenuating velocities or inhibiting waves, especially when wavelengths approach interparticle spacing. The particle size, porosity, and stiffness ratio primarily influence the macroscopic average stiffness, exhibiting consistent effects on dispersion characteristics across all wavelength domains. In contrast, the particle size ratio and gravel content simultaneously influence both macroscopic mechanical properties and microstructural organization, leading to opposing trends across different wavelength ranges. Model validation against experiments confirms its exceptional predictive ability regarding wave propagation characteristics, including relationships between lowpass threshold frequency, porosity, wave velocity, and coarse particle content. This study provides a theoretical foundation for understanding wave propagation in sand-gravel mixtures and their engineering applications.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107351 ISSN: 0266-352X

The bank protection measures of waterways shall become more environmentally friendly in the future including the use of plants instead of stones. The low levels of protection provided by plants in the early phase after planting requires a process-based understanding of soil-wave-interaction. One process that is considered essential is liquefaction where the soil undergoes a phase-change from solid-like to fluid-like behaviour which could reduce the safety of the system. The aim of this publication is to analyse the results of column experiments on wave-induced soil liquefaction and to develop a numerical model which is able to describe the entire process from the pre-liquefaction phase to the following reconsolidation in order to support the analysis of liquefaction experiments. Numerical simulations of the column experiments were done using a fully coupled hydro-mechanical model implemented in the open-source software FEniCS. A permeability model derived from granular rheology allows the simulation of dilute as well as dense suspensions and sedimented soil skeletons. The results of the simulations show a good agreement with the experimental data. Theoretical limits in the liquefied state are captured without the common modelling segmentation into pre-and post-liquefaction phase. Due to the modular structure of the implementation, the constitutive setting can be adjusted to incorporate more complex formulations in order to study the influence of wall friction and non-linearity in soil behaviour.

期刊论文 2025-09-01 DOI: 10.1016/j.compgeo.2025.107321 ISSN: 0266-352X

Accurately capturing the seismic response of underground structures subjected to obliquely incident seismic waves, particularly when the angle of incidence surpasses the critical value, remains a challenging task in earthquake engineering. To address this gap, this paper presents a three-dimensional (3D) nonlinear seismic analysis of subway stations embedded in a layered site, specifically in response to obliquely incident shear (SV) waves at arbitrary angles. An innovative procedure, termed the coupled dynamic stiffness matrix-finite element method (DSM-FEM), is introduced to enable seismic input by transforming responses induced by arbitrarily incoming SV waves into equivalent nodal loads. To accurately simulate wave propagation within the site, a viscous-spring artificial boundary is utilized, while a nonlinear generalized Masing model that incorporates modified damping is employed. Using the Daikai subway station as a benchmark, the research examines the effects of varying oblique incident angles on the structural response, taking into account dynamic soil-structure interaction. The results reveal that the maximum response, including peak deformation, internal forces, Mises stress, occurs when the incident angle approaches the critical value. Beyond this critical angle, the seismic response notably diminishes. Additionally, the influence of horizontal incident angles is found to be noticeable, leading to variations in deformation patterns and internal forces across different structural components. Specifically, it has been observed that the drift ratio, displacement, shear force, acceleration, and Mises stress exhibit a decreasing trend as the horizontal incident angles increase. These findings highlight the significance of considering non-vertical input ground motion in seismic analysis, and offer valuable insights for the structural design and safety evaluation of underground structures.

期刊论文 2025-09-01 DOI: 10.1016/j.tust.2025.106660 ISSN: 0886-7798

This study aims to assess the effectiveness of inter-storey isolation structures in reducing seismic responses in super high-rise buildings, with a focus on analyzing the impact of soil-structure interaction (SSI) on the dynamic performance of the buildings. Utilizing the lumped parameter SR (Sway-Rocking) model, which separately simulates the overall displacement of the super high-rise structure and the rotational motion of the foundation, the dynamic characteristic parameters of the simplified model are derived. The natural frequencies of the system are calculated by solving the equations of motion. The study examines the influence of parameters such as soil shear wave velocity and structural damping ratio on the dynamic response of the structure, with particular emphasis on displacement transfer rates. The findings indicate that inter-storey isolation structures are highly effective in reducing displacement responses in super high-rise buildings, especially when considering SSI effects. Specifically, for high-damping inter-storey isolation structures, modal frequencies decrease as soil shear wave velocity decreases. In non-isolated structures, the damping ratio increases with decreasing soil shear wave velocity, whereas for isolated structures, the damping ratio decreases, with a more pronounced reduction at higher damping ratios. Increasing damping significantly reduces inter-storey displacement and damage indices. However, under low shear wave velocity conditions, inter-storey isolation structures may experience increased displacement and damage.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109445 ISSN: 0267-7261

Predictive modeling of dielectric heating in porous foods is challenging due to their nature as multiphase materials. To explore the relationship between the topological structure of multiphase foods and the accuracy of dielectric mixture models, the degree of anisotropy of two cooked rice samples with 26 and 32 % porosity was determined, and their dielectric properties were estimated using the Lichtenecker (LK), Landau-LifshitzLooyenga (LLL), and Complex Refractive Index Mixture (CRIM) equations. These properties were used in a predictive finite-element model for reheating an apparent homogeneous rice sample on a flatbed microwave (MW) for 120 s. The results were compared with experimental data and a validated two-element model. Unlike LK and LLL equations, the CRIM equation predicted heat accumulation towards the edges of the container at the two values of porosity ratio evaluated, in accordance with the experimental results and the isotropic nature of the sample. The simulated temperature distributions suggest that the three evaluated equations could predict the MW heating behavior of rice to some extent, but that in order to obtain more accurate results, it could be useful to obtain an empirical topology-related parameter specific for this sample. These results can provide insight on the relationship between the topology of the porous structure in the sample and the adequacy of different dielectric mixture models.

期刊论文 2025-09-01 DOI: 10.1016/j.jfoodeng.2025.112598 ISSN: 0260-8774

Ultrasonic guided waves are widely used in the nondestructive testing (NDT) of aboveground pipelines. However, their application in buried pipeline inspection is significantly hindered by severe soil-induced attenuation. This study proposes a method for detecting defects in buried pipelines using nonlinear chirp signals encoded with orthogonal complementary Golay code pairs. By adjusting the proportion of low-frequency and high-frequency components in the excitation signal, the attenuation of guided waves in buried pipelines is effectively reduced. Meanwhile, the use of coded sequences increases the energy of the excitation signal, and the excellent autocorrelation properties of broadband signals enhance the time-domain resolution of defect echoes. The fundamental principles of coded excitation based on nonlinear chirp signals and pulse compression methods are first introduced. MATLAB simulations are then employed to verify the approach's effectiveness in the characterization of defect echoes under various conditions and signal-to-noise ratios (SNR). A subsequent comparative analysis, using finite element (FE) simulations for buried pipelines, demonstrates that nonlinear chirp signals with a higher proportion of low-frequency components exhibit better resistance to attenuation. By fine-tuning the chirp parameters, higher defect reflectivity can be achieved than with conventional tone bursts for various defect types in buried pipelines. FE simulations further illustrate the superiority of the proposed method over tone bursts in terms of excitation signal amplitude, defect echo reflectivity, and defect location accuracy. Finally, defect detection experiments on buried pipelines with multiple defects confirm that the nonlinear chirp signals with carefully selected parameters exhibit lower attenuation rates. In the same testing environment, the coded nonlinear chirp signals outperform tone bursts by providing higher excitation amplitudes, greater defect echo reflectivity with an increase of up to 81.45 percent, and enhanced time-domain resolution. The proposed method effectively reduces ultrasonic guided wave attenuation in buried pipelines while increasing defect echo reflectivity and extending the effective detection range.

期刊论文 2025-08-01 DOI: 10.1016/j.ijpvp.2025.105503 ISSN: 0308-0161

Suction anchor foundations serve as a critical anchoring solution for submerged floating tunnel (SFT) cable systems. In marine environments, these foundations must endure not only static loads but also long-term oblique cyclic loading caused by wave excitation, which can result in soil weakening and a reduction in bearing capacity. This study systematically examines the oblique cyclic bearing behavior of SFT suction anchors using a combined experimental and numerical approach. The results demonstrate that (1) the cyclic load ratio initially increases with increasing wave periods, then decreases, before rising again; (2) displacement accumulation at the mooring point occurs rapidly during the initial wave loading cycles, gradually stabilizing as cycling progresses; (3) during foundation failure, tension redistribution displays asymmetric characteristics, with connected cables experiencing load reduction while adjacent cables are subjected to amplified forces; (4) numerical analyses quantify key parametric relationships, revealing that the weakening coefficient (alpha) decreases with increasing loading angle, exhibits a positive correlation with zeta b, and shows a negative correlation with zeta c. These findings advance the understanding of cyclic performance in SFT anchors and offer essential insights for SFT safety evaluations.

期刊论文 2025-07-15 DOI: 10.1016/j.oceaneng.2025.121409 ISSN: 0029-8018
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共226条,23页