共检索到 4

Assessing the dynamic properties of rocks remains a foundational pursuit in the field of rock engineering, providing crucial insights into their mechanical behaviors across a spectrum of loading conditions, including static, cyclic, and dynamic scenarios. This paper expounds upon the utilization of the nonresonance (NR) torsional shear test and its implications for understanding rock responses, particularly in the context of low and medium loading rates. The NR method serves as a pivotal tool for investigating model rock materials subjected to loading conditions characterized by low frequencies and amplitudes. Renowned for its efficacy, this method allows the simultaneous determination of two critical dynamic parameters: shear modulus (G) and damping ratio (D), all at a specific loading frequency. It has been ascertained that the loading rate increased as the loading frequency and applied amplitude of loading increased. With increasing loading rate, the shear modulus consequently increased while the damping ratio decreased. It is observed that the dynamic responses of both ramp and sinusoidal loading waveforms increase concurrently with the amplitudes of the applied torque and loading frequencies. The sinusoidal waveform exhibits greater dynamicity than the ramp waveform at a certain loading rate. Furthermore, this study delves into the intricate analysis of the nonlinear viscoelastic dynamic response exhibited by rocks, utilizing the modified hyperbolic (MH) model and the Ramberg-Osgood (RO) model as analytical tools. The findings derived from curve fitting exercises unequivocally underscore the superior applicability of the Ramberg-Osgood model, particularly in characterizing modulus reduction behavior. Conversely, the modified hyperbolic model emerges as the preferred choice for comprehensive damping ratio analyses. This study enhances the comprehension of rock dynamics and responses under diverse loading conditions, contributing valuable understanding to rock engineering. Insights into loading and strain rate effects aid informed decisions and preventive measures for rock deformation and collapse risks. This research suggests vital findings regarding the response of intact model materials to various dynamic loading conditions, providing significant insights for comprehending the mechanical response of rock structures exposed to cyclic loading conditions, which have the potential to create weaknesses in rocks resulting in untimely failures. The research can be utilized to assess the response of rocks in the context of seismic incidents, specifically those characterized by shear waves at particular frequencies. This study evaluates the response of rocks during earthquakes by establishing a correlation between the amplitude of torsional shear loading and the peak ground displacement linked to seismic events. In addition to its seismic implications, this research aids in advancing accurate predictive models and instruments that assess the stability and integrity of rock formations under different loading rates-a consequence of the symbiosis between frequency and amplitude. Professionals may ensure efficient risk mitigation, make well-informed decisions, and execute preventative measures concerning rock collapse and deformation by virtue of their comprehensive awareness of the delicate relationship between loading rate and dynamic rock properties. Incorporating the findings into engineering design standards and codes can bring about substantial improvements, augmenting the overall reliability and protection of rock structures.

期刊论文 2024-08-01 DOI: 10.1061/IJGNAI.GMENG-9752 ISSN: 1532-3641

Geophysics and Geotechnical Engineering commonly use 1-D wave propagation analysis, simplifying complex scenarios by assuming flat and homogeneous soil layers, vertical seismic wave propagation and negligible pore water pressure effects (total stress analysis). These assumptions are commonly used in practice, providing the basis for applications like analysing site responses to earthquakes and characterizing soil properties through inversion processes. These processes involve various in situ tests to estimate the subsurface soil's material profile, providing insights into its behaviour during seismic events. This study seeks to address the limitations inherent to 1-D analyses by using 3-D physics-based simulations to replicate in situ tests performed in the Argostoli basin, Greece. Active and passive source surveys are simulated, and their results are used to determine material properties at specific locations, using standard geophysical methods. Our findings underscore the potential of 3-D simulations to explore different scenarios, considering different survey configurations, source types and array sets.

期刊论文 2024-06-26 DOI: 10.1093/gji/ggae187 ISSN: 0956-540X

Mining activities can damage rock masses and easily induce ground collapse, which seriously threatens safe production in mining areas. Micro-seismic systems can monitor rock mass deformation signals in real time and provide more accurate data for rock mass deformation analysis. Therefore, in this study, the waveform characteristics of micro-seismic events induced by ground collapse in the Rongxing gypsum mine were analyzed; the occurrence of these events was introduced on the basis of Fast Fourier Transform, an established Frequency-Time-Amplitude model, in order to put forward the index of energy proportion of the main band. The results showed the following. (1) The seismic sequence type of ground collapse was foreshock-mainshock-aftershocks. The interval between the foreshock and mainshock was longer than that between the mainshock and aftershocks. (2) The deformation corresponding to the foreshock micro-seismic events was mainly that of a small-scale crack. The deformation corresponding to the micro-seismic events during the mainshock was characterized by the gradual development of small-scale cracks, and the development of large-scale cracks accelerated, accompanied by slight rock collapse. The deformation corresponding to the micro-seismic events during the aftershocks showed that almost no small-scale cracks developed, and the large-scale crack development was intense, and accompanied by numerous rock and soil mass collapses. (3) The observed decreasing frequency distribution and energy dispersion can be used as possible precursors of ground collapse.

期刊论文 2024-02-01 DOI: 10.3390/s24041309

We develop an analytical solution to the problem of one-dimensional consolidation of unsaturated soil subjected to cyclic loads with arbitrary waveforms. The solution predicts the excess pore water and pore air pressures and the accompanying vertical compression in a poroelastic, unsaturated soil material. Cyclic loading occurs in a variety of engineering applications and often generates higher excess pore fluid pressures and larger vertical compression than does a time-invariant load. In the present study, the loading function is allowed to take on any arbitrary waveform represented by a Fourier trigonometric series. Analytical solution to the boundary-value problem in one dimension is given in closed form describing the frequency-independent and frequency-dependent components of the poroelastic response. We verify the analytical solution through representative examples involving cyclic loads with square and triangular patterns. Apart from the shape of the forcing function, we also investigate the effects of initial water saturation, soil texture, and excitation frequency on the system response.

期刊论文 2024-02-01 DOI: 10.1002/nag.3659 ISSN: 0363-9061
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页