Substituting alternative materials and energy sources with forest biomass can cause significant environmental consequences, such as alteration in the released emissions which can be described by displacement factors (DFs). Until now, DFs of wood-based materials have included greenhouse gas (GHG) emissions and have been associated with lower fossil and process-based emissions than non-wood counterparts. In addition to GHGs, aerosols released in combustion processes, for example, alter radiative forcing in the atmosphere and consequently have an influence on climate. In this study, the objective was to quantify the changes in the most important aerosol emission components for cases when wood-based materials and energy were used to replace the production of high-density polyethylene (HDPE) plastic, common fossil-based construction materials (concrete, steel and brick), non-wood textile materials and energy produced by fossil fuels and peat. For this reason, we expanded the DF calculations to include aerosol emissions of total suspended particles (TSP), respirable particulate matter (PM10), fine particles (PM2.5), black carbon (BC), nitrogen oxides (NOx), sulphur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs) based on the embodied energies of materials and energy sources. The DFs for cardboard implied a decrease in BC, SO2 and NMVOC emissions but an increase in the other emission components. DFs for sawn wood mainly indicated higher emissions of both particles and gaseous emissions compared to non-wood counterparts. DFs for wood-based textiles demonstrated increased particle emissions and reduced gaseous emissions. DFs for energy biomass mainly implied an increase in emissions, especially if biomass was combusted in small-scale appliances. Our main conclusion highlights the critical need to thoroughly assess how using forest biomass affects aerosol emissions. This improved understanding of the aerosol emissions of the forestry sector is crucial for a comprehensive evaluation of the climate and health implications associated with forest biomass use.
Widespread shrubification across the Arctic has been generally attributed to increasing air temperatures, but responses vary across species and sites. Wood structures related to the plant hydraulic architecture may respond to local environmental conditions and potentially impact shrub growth, but these relationships remain understudied. Using methods of dendroanatomy, we analysed shrub ring width (RW) and xylem anatomical traits of 80 individuals of Salix glauca L. and Betula nana L. at a snow manipulation experiment in Western Greenland. We assessed how their responses differed between treatments (increased versus ambient snow depth) and soil moisture regimes (wet and dry). Despite an increase in snow depth due to snow fences (28-39 %), neither RW nor anatomical traits in either species showed significant responses to this increase. In contrast, irrespective of the snow treatment, the xylem specific hydraulic conductivity (Ks) and earlywood vessel size (LA95) for the study period were larger in S. glauca (p < 0.1, p < 0.01) and B. nana (p < 0.01, p < 0.001) at the wet than the dry site, while both species had larger vessel groups at the dry than the wet site (p < 0.01). RW of B. nana was higher at the wet site (p < 0.01), but no differences were observed for S. glauca. Additionally, B. nana Ks and LA95 showed different trends over the study period, with decreases observed at the dry site (p < 0.001), while for other responses no difference was observed. Our results indicate that, taking into account ontogenetic and allometric trends, hydraulic related xylem traits of both species, along with B. nana growth, were influenced by soil moisture. These findings suggest that soil moisture regime, but not snow cover, may determine xylem responses to future climate change and thus add to the heterogeneity of Arctic shrub dynamics, though more longterm species- and site- specific studies are needed.
Brown carbon (BrC), known as light-absorbing organic aerosol in the near-ultraviolet (UV) and short visible region, plays a significant role in the global and regional climate change. A detailed understanding of the spectral optical properties of BrC is beneficial for reducing the uncertainty in radiative forcing calculation. In this work, the spectral properties of primary BrC were investigated by using a four-wavelength broadband cavity-enhanced albedometer with central wavelengths at 365, 405, 532 and 660 nm. The BrC samples were generated by the pyrolysis of three types of wood. During the pyrolysis process, the measured average single scattering albedo (SSA) at 365 nm was about 0.66 to 0.86, where the average absorption angstrom ngstrom exponent (AAE) was between 5.8 and 7.8, and the average extinction angstrom ngstrom exponent (EAE) was within 2.1 to 3.5. The full spectral measurement of SSA (300-700 nm) was realized by an optical retrieval method and the retrieved SSA spectrum was directly applied to evaluate aerosol direct radiative forcing (DRF) efficiency. The DRF efficiency over ground of various primary BrC emissions increased from 5.3 % to 68 % as compared to the non-absorbing organic aerosol assumption. A decrease of about 35 % in SSA would cause the DRF efficiency over ground to change from cooling effect to warming effect (from -0.33 W/m2 to +0.15 W/m2) in the near-UV band (365-405 nm). The DRF efficiency over ground of strongly absorptive primary BrC (lower SSA) contributed 66 % more than weakly absorptive primary BrC (higher SSA). These findings proved the importance of broadband spectral properties of BrC, which are substantial for radiative forcing evaluation of BrC and should be considered in global climate models.
Effective density (peff) is an important property describing particle transportation in the atmosphere and in the human respiratory tract. In this study, the particle size dependency of peff was determined for fresh and photochemically aged particles from residential combustion of wood logs and brown coal, as well as from an aerosol standard (CAST) burner. peff increased considerably due to photochemical aging, especially for soot agglomerates larger than 100 nm in mobility diameter. The increase depends on the presence of condensable vapors and agglomerate size and can be explained by collapsing of chain-like agglomerates and filling of their voids and formation of secondary coating. The measured and modeled particle optical properties suggest that while light absorption, scattering, and the single-scattering albedo of soot particle increase during photochemical processing, their radiative forcing remains positive until the amount of nonabsorbing coating exceeds approximately 90% of the particle mass.
A nationwide lockdown was imposed in India due to the Coronavirus Disease 2019 (COVID-19) pandemic which significantly reduced the anthropogenic emissions. We examined the characteristics of equivalent black carbon (eBC) mass concentration and its source apportionment using a multiwavelength aethalometer over an urban site (Ahmedabad) in India during the pandemic induced lockdown period of year 2020. For the first time, we estimate the changes in BC, its contribution from fossil (eBC(ff)) and wood (eBC(wf)) fuels during lockdown (LD) and unlock (UL) periods in 2020 with respect to 2017 to 2019 (normal period). The eBC mass concentration continuously decreased throughout lockdown periods (LD1 to LD4) due to enforced and stringent restrictions which substantially reduced the anthropogenic emissions. The eBC mass concentration increased gradually during unlock phases (UL1 to UL7) due to the phase wise relaxations after lockdown. During lockdown period eBC mass concentration decreased by 35%, whereas during the unlock period eBC decreased by 30% as compared to normal period. The eBC(wf) concentrations were higher by 40% during lockdown period than normal period due to significant increase in the biomass burning emissions from the several community kitchens which were operational in the city during the lockdown period. The average contributions of eBC(ff) and eBC(wf) to total eBC mass concentrations were 70% and 30% respectively during lockdown (LD1 to LD4) period, whereas these values were 87% and 13% respectively during the normal period. The reductions in BC concentrations were commensurate with the reductions in emissions from transportation and industrial activities. The aerosol radiative forcing reduced significantly due to the reduction in anthropogenic emissions associated with COVID-19 pandemic induced lockdown leading to a cooling of the atmosphere. The findings in the present study on eBC obtained during the unprecedented COVID-19 induced lockdown can provide a comprehensive understanding of the BC sources and current emission control strategies, and thus can serve as baseline anthropogenic emissions scenario for future emission control strategies aimed to improve air quality and climate.
Belowground assemblages are closely related to the aboveground vegetation and edaphic properties, which are also driven by dominant plants due to direct and indirect influences. However, the effects of dominant woody plants on the belowground organisms along successional gradients remain poorly understood. Plant and soil samples were collected from an initial herbaceous stage (i.e. alpine meadows) and four stages dominated by woody species, beneath and between patches of the dominant woody plants, to assess the effects of dominant woody plants on the succession of microbial communities along a secondary successional gradient. We quantified herbaceous, edaphic, bacterial, and fungal dissimilarities between stages to explore how dominant woody plants affect bacterial and fungal dissimilarities between stages using structural equation modeling. We found that dominant woody plants generally increase the succession of microbial communities in early stages, but decrease it in late stages. Our results further suggest that the herbaceous dissimilarity between stages plays more important roles than the edaphic one in mediating the effect of dominant woody plants on both bacterial and fungal dissimilarities between stages. Our results provide insight into the relative role of direct and indirect influences on microbial dissimilarity between stages and highlight the importance of dominant woody plants in driving microbial succession. As woody encroachment increases in alpine meadows, the dominant woody plants may have strong consequences on the dynamic of microbial communities, thereby affecting ecosystem functioning.
Climate warming in northern high latitudes has progressed twice as fast as the global average, leading to prominent but puzzling changes in vegetation structure and functioning of tundra and boreal ecosystems. While some regions are becoming greener, others have lost or shifted vegetation condition as indicated by a browning signal. The mechanisms underlying this 'greening or browning enigma' remain poorly understood. Here we use multi-sourced time-series of satellite-derived vegetation indices to reveal that spectral greening is associated with reductions in surface water cover (i.e. fraction of surface water bodies), whereas spectral browning is linked to increases in surface water cover. These patterns are consistently observed from both 30 m resolution Landsat data and 250 m resolution MODIS data on the basis of grid cells sized of 1, 2 and 4 km. Our study provides, to our knowledge, the first biome-scale demonstration that interactions between vegetation condition and water cover change can explain the contrasting trajectories of ecosystem dynamics across the northern high latitudes in response to climate warming. These divergent trajectories we identified have major implications for ecosystem functioning, carbon sequestration and feedbacks to the climate system. Further unraveling the interaction between vegetation and surface water will be essential if we are to understand the fate of tundra and boreal biomes in a warming climate.
Portable aethalometers are commonly used for online measurements of light-absorbing carbonaceous particles (LAC). However, they require strict calibration. In this study, the performance of a micro-aethalometer (MA200 with polytetrafluoroethylene filter) in charactering brown carbon aerosol (BrC) absorption was evaluated in comparison with reference materials and techniques that included bulk solution absorbance and Mie-theory based particle extinction retrieval via broadband cavity enhanced spectrometer (BBCES). Continuous-wavelength resolved (300-650 nm) imaginary refractive index (k(BrC)) was derived with these methods for various BrC proxies and standard materials representing a wide range of sources and absorbing abilities, including the strongly absorbing nigrosin, pahokee peat fluvic acid (PPFA), tar aerosol from wood pyrolysis, humic-like substance (HULIS) separated from wood smoldering burning emissions, and secondary organic aerosols (SOA) from photochemical oxidation of indole and naphthalene in the presence of NOx. The BrC and nigrosin optical results by bulk solution absorption are comparable with the properties retrieved from BBCES. The MA200 raw measurements provide reliable absorption Angstrom exponent (AAE) but overestimate kBrC largely. The parameterized overestimates against reference methods depend on light absorption strength, so that the MA200 overestimates more for the less absorbing BrC. The correction factor for MA200 can be expressed well as an exponential function of kBrC or particle single scattering albedo (SSA), and also as a power-law function of the MA200 raw results derived BrC mass absorption efficiency (MAE). The ensemble correction factor regressed for all these BrC and nigrosin is 2.8 based on bulk absorption and 2.7 using BBCES result as reference. Simple radiative forcing (SRF) calculations for different scenarios using the correction for MA200, show consistent SRF when using the aethalometer results after the k(BrC)-dependent correction. (C) 2021 Elsevier B.V. All rights reserved.
Rapid climate change in Arctic regions is linked to the expansion of woody taxa (shrubification), and an increase in biomass as tundra becomes greener. Reindeer and caribou (Rangifer tarandus) are considered able to suppress vegetative greening through grazing and trampling. Quantifying reindeer use of different land cover types can help us understand their impact on the growth and recruitment of deciduous shrubs, many of which serve as fodder (e.g. Salix spp.), in favourable habitats, such as naturally denuded landslides in permafrost areas. Understanding the spatial distribution of reindeer pressure on vegetation is important to project future patterns of greening, albedo, snow capture, active layer development, and the overall resilience of tundra rangelands under ongoing climate change. Here we quantify reindeer habitat use within the low Arctic tundra zone of Yamal, West Siberia estimated from pellet-group counts, and also how active layer thickness (ALT) relates to reindeer use. Our results confirm intensive use by reindeer of terrain with high June-July time integrated normalised difference vegetation index, steeper slopes, ridges, upper slopes and valleys, and a preference for low erect shrub tundra. These sites also seem to have a shallower ALT compared to sites less used by reindeer, although we did not find any direct relationship between ALT and reindeer use. Low use of tall Salix habitats indicated that reindeer are unlikely to suppress the growth of already tall-erect woody taxa, while they exert maximum pressure in areas where shrubs are already low in stature, e.g. ridgetops. Reindeer ability to suppress the regrowth and expansion of woody taxa in landslide areas (i.e. concavities) seems limited, as these types were less used. Our results suggest that reindeer use of the landscape and hence their effects on the landscape correlates with the landscape structure. Future research is needed to evaluate the role and efficiency of reindeer as ecosystem engineers capable of mediating the effects of climate change.
AimsIn this study, we investigated the effects of reduced snow depth on plant phenology, productivity, nitrogen (N) cycling, and N use in canopy and understory vegetation. We hypothesized that decreased snow depth would hasten the timing of leaf flushing and N uptake in understory vegetation, increasing its N competitive advantage over canopy trees.ResultsSnow removal did not directly affect the phenology of either canopy or understory vegetation. Understory vegetation took up more N in the snow removal plots than in the control plots, particularly in the mid- to late-growing season. Leaf production and N uptake in canopy trees also did not differ between the control and snow removal plots, but N resorption efficiency in the snow removal plots (57.6%) was significantly higher than those in control plots (50.0%).ConclusionsIncreased N uptake by understory plants may induce N limitation in canopy trees, which in turn may cause canopy trees to increase their N use efficiency. Such competitive advantage of understory vegetation over canopy trees against snow reduction may affect N cycling via litter quality and quantity not only just after the growing season but also in subsequent seasons.