["Lilhare, Rajtantra","Dery, Stephen J","Stadnyk, Tricia A","Pokorny, Scott","Koenig, Kristina A"]2022-11-01期刊论文
(11)
This study investigates the impacts of climate change on the hydrology and soil thermal regime of 10 sub-arctic watersheds (northern Manitoba, Canada) using the Variable Infiltration Capacity (VIC) model. We utilize statistically downscaled and biascorrected forcing datasets based on 17 general circulation model (GCM) - representative concentration pathways (RCPs) scenarios from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to run the VIC model for three 30-year periods: a historical baseline (1981-2010: 1990s), and future projections (2021-2050: 2030s and 2041-2070: 2050s), under RCPs 4.5 and 8.5. Future warming increases the average soil column temperature by similar to 2.2 C in the 2050s and further analyses of soil temperature trends at three different depths show the most pronounced warming in the top soil layer (1.6 degrees C 30-year(-1) in the 2050s). Trend estimates of mean annual frozen soil moisture fraction in the soil column show considerable changes from 0.02 30-year(-1) (1990s) to 0.11 30-year(-1) (2050s) across the study area. Soil column water residence time decreases significantly (by 5 years) during the 2050s when compared with the 1990s as soil thawing intensifies the infiltration process thereby contributing to faster conversion to baseflow. Future warming results in 40%-50% more baseflow by the 2050s, where it increases substantially by 19.7% and 46.3% during the 2030s and 2050s, respectively. These results provide crucial information on the potential future impacts of warming soil temperatures on the hydrology of sub-arctic watersheds in north-central Canada and similar hydro-climatic regimes.