Spatial heterogeneity in spectral variability of aerosol optical depth and its implications to aerosol radiative forcing in the Tropical Indian Ocean and in the Indian Ocean Sector of Southern Ocean
["Menon, Harilal B","Hulswar, Shrivardhan","Anilkumar, N","Thelakkat, Achuthankutty Chittur","Moorthy, K. Krishna","Babu, Suresh"]
2015-08-01
期刊论文
The aerosol optical depths (AODs) in the wavelength range 380-875 nm and black carbon (BC) mass concentrations were estimated over the tropical Indian Ocean and in the Indian Ocean sector of Southern Ocean, between 14 degrees N and 53 degrees S, during December 2011-February 2012, onboard the Ocean Research Vessel (ORV) Sagar Nidhi. The data were analysed to understand the spectral variability, micro-physical characteristics of aerosols and the associated radiative forcing. Concurrent MODIS-derived chlorophyll a (Chl-a) and sea-surface temperature (SST) provided ancillary data used to understand the variability of biomass in association with fronts and the possible role of phytoplankton as a source of aerosols. AODs and their spectral dependencies were distinctly different north and south of the Inter-Tropical Convergence Zone (ITCZ). North of 11 degrees S (the northern limit of ITCZ), the spectral distribution of AOD followed Angstrom turbidity formule (Junge power law function), while it deviated from such a distribution south of 16 degrees S (southern boundary of ITCZ). At the southern limit of the ITCZ and beyond, the spectral variation of AOD showed a peak around 440 nm, the amplitude of which was highest at similar to 43 degrees S, the axis of the subtropical front (STF) with the highest Chl-a concentration (0.35 mu g l(-1)) in the region. To understand the role of Chl-a in increasing AOD at 440 nm, AOD at this wavelength was estimated using Optical properties of Aerosols and Clouds (OPAC) model. The anomalies between the measured and model-estimated (difference between the measured and estimated AOD values at 440 nm) AOD(440) were correlated with Chl-a concentrations. A very high and significant association with coefficient of determination (R-2=0.80) indicates the contribution of Chl-a as a source of aerosols in this part of the ocean. On the basis of the measured aerosol properties, the study area was divided into three zones; Zone 1 comprising of the area between 10 degrees N and 11 degrees S; Zone 2 from 16 degrees S to 53 degrees S; and Zone 3 from 52 degrees S to 24 degrees S during the return leg. BC mass concentration was in the range 520 ng m(-3) to 2535 ng m(-3) in Zone 1, while it was extremely low in the other zones (ranging from 49.3 to 264.4 ng m(-3) in Zone 2 and from 61.6 ng m(-3) to 303.3 ng m(-3) in Zone 3). The atmospheric direct-short wave radiative forcing (DRSF), estimated using a radiative transfer model (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART), was in the range 4.72-27.62 wm(-2) north of 16 degrees S, and 4.80-6.25 wm(-2) south of 16 degrees S. (C) 2015 Elsevier Ltd. All rights reserved.
来源平台:DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY