共检索到 2

Using idealized climate model simulations, we investigate the effectiveness of black carbon (BC) aerosols in warming the planet relative to CO2 forcing. We find that a 60-fold increase in the BC aerosol mixing ratio from the present-day levels leads to the same equilibrium global mean surface warming (similar to 4.1 K) as for a doubling of atmospheric CO2 concentration. However, the radiative forcing is larger (similar to 5.5 Wm(-2)) in the BC case relative to the doubled CO2 case (similar to 3.8 Wm(-2)) for the same surface warming indicating the efficacy (a metric for measuring the effectiveness) of BC aerosols to be less than CO2. The lower efficacy of BC aerosols is related to the differences in the shortwave (SW) cloud feedback: negative in the BC case but positive in the CO2 case. In the BC case, the negative SW cloud feedback is related to an increase in the tropical low clouds which is associated with a northward shift (similar to 7 degrees) of the Intertropical Convergence Zone (ITCZ). Further, we show that in the BC case fast precipitation suppression offsets the surface temperature mediated precipitation response and causes similar to 8% net decline in the global mean precipitation. Our study suggests that a feedback between the location of ITCZ and the interhemispheric temperature could exist, and the consequent SW cloud feedback could be contributing to the lower efficacy of BC aerosols. Therefore, an improved representation of low clouds in climate models is likely the key to understand the global climate sensitivity to BC aerosols.

期刊论文 2019-08-01 DOI: 10.1088/1748-9326/ab21e7 ISSN: 1748-9326

The aerosol optical depths (AODs) in the wavelength range 380-875 nm and black carbon (BC) mass concentrations were estimated over the tropical Indian Ocean and in the Indian Ocean sector of Southern Ocean, between 14 degrees N and 53 degrees S, during December 2011-February 2012, onboard the Ocean Research Vessel (ORV) Sagar Nidhi. The data were analysed to understand the spectral variability, micro-physical characteristics of aerosols and the associated radiative forcing. Concurrent MODIS-derived chlorophyll a (Chl-a) and sea-surface temperature (SST) provided ancillary data used to understand the variability of biomass in association with fronts and the possible role of phytoplankton as a source of aerosols. AODs and their spectral dependencies were distinctly different north and south of the Inter-Tropical Convergence Zone (ITCZ). North of 11 degrees S (the northern limit of ITCZ), the spectral distribution of AOD followed Angstrom turbidity formule (Junge power law function), while it deviated from such a distribution south of 16 degrees S (southern boundary of ITCZ). At the southern limit of the ITCZ and beyond, the spectral variation of AOD showed a peak around 440 nm, the amplitude of which was highest at similar to 43 degrees S, the axis of the subtropical front (STF) with the highest Chl-a concentration (0.35 mu g l(-1)) in the region. To understand the role of Chl-a in increasing AOD at 440 nm, AOD at this wavelength was estimated using Optical properties of Aerosols and Clouds (OPAC) model. The anomalies between the measured and model-estimated (difference between the measured and estimated AOD values at 440 nm) AOD(440) were correlated with Chl-a concentrations. A very high and significant association with coefficient of determination (R-2=0.80) indicates the contribution of Chl-a as a source of aerosols in this part of the ocean. On the basis of the measured aerosol properties, the study area was divided into three zones; Zone 1 comprising of the area between 10 degrees N and 11 degrees S; Zone 2 from 16 degrees S to 53 degrees S; and Zone 3 from 52 degrees S to 24 degrees S during the return leg. BC mass concentration was in the range 520 ng m(-3) to 2535 ng m(-3) in Zone 1, while it was extremely low in the other zones (ranging from 49.3 to 264.4 ng m(-3) in Zone 2 and from 61.6 ng m(-3) to 303.3 ng m(-3) in Zone 3). The atmospheric direct-short wave radiative forcing (DRSF), estimated using a radiative transfer model (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART), was in the range 4.72-27.62 wm(-2) north of 16 degrees S, and 4.80-6.25 wm(-2) south of 16 degrees S. (C) 2015 Elsevier Ltd. All rights reserved.

期刊论文 2015-08-01 DOI: 10.1016/j.dsr2.2015.03.012 ISSN: 0967-0645
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页