A systematic review of knowledge graph and computational schemes related to soil thermal conductivity
["Liu, Wenhao","Li, Ren","Wu, Tonghua","Hu, Guojie","Zhang, Yongyong"]
2025-05-01
期刊论文
(5)
Soil thermal conductivity (STC) plays a crucial role in regulating the energy distribution of both the surface and underground soil layers. It is widely applied in various fields, including engineering design, geothermal resource development and climate change research. A rapid and accurate estimation of STC remains a key focus in the study of soil thermodynamic parameters. However, the methods for estimating STC and their distinct characteristics have yet to be systematically reviewed. In this study, we used bibliometrics to comprehensively and systematically review the literature on STC, focusing on knowledge graph characteristics to analyze the development trend of calculation schemes. The main conclusions drawn from the study are as follows: (1) In recent years, most studies have been focused on soil thermal characteristics and their main contributing factors, the soil hydrothermal process in the Qinghai-Tibet Plateau, geothermal equipment and numerical simulations, and the exploration of geothermal resources. (2) A systematic review of various schemes indicates that no single scheme is universally applicable to all soil types. Moreover, a single parameterization scheme fails to meet the practical requirements of land surface process models. We evaluated the advantages and disadvantages of the traditional heat conduction schemes, parameterization schemes, and machine learning-based schemes and the findings suggest that a comprehensive scheme that integrates these three different schemes for STC simulations should be urgently developed.
来源平台:THEORETICAL AND APPLIED CLIMATOLOGY