Trace elements in soils of the Antarctic ice-free areas: Insights on natural geochemical values, anthropogenic impact and possible remobilisation upon permafrost thaw
Climate change is transforming the ice-free areas of Antarctica, leading to rapid changes in terrestrial ecosystems. These areas represent <0.5% of the continent and coincide with the most anthropogenically pressured sites, where the human footprint is a source of contamination. Simultaneously, these are the locations where permafrost can be found, not being clear what might be the consequences following its degradation regarding trace element remobilisation. This raises the need for a better understanding of the natural geochemical values of Antarctic soils as well as the extent of human impact in the surroundings of scientific research stations. Permafrost thaw in the Western Antarctic Peninsula region and in the McMurdo Dry Valleys is the most likely to contribute to the remobilisation of toxic trace elements, whether as the result of anthropogenic contamination or due to the degradation of massive buried ice and ice-cemented permafrost. Site-specific locations across Antarctica, with abandoned infrastructure, also deserve attention by continuing to be a source of trace elements that later can be released, posing a threat to the environment. This comprehensive summary of trace element concentrations across the continent's soils enables the geographical systematisation of published results for a better comparison of the literature data. This review also includes the used analytical techniques and methods for trace element dissolution, important factors when reporting low concentrations. A new perspective in environmental monitoring is needed to investigate if trace element remobilisation upon permafrost thaw might be a tangible consequence of climate change.