Centrifuge model tests on liquefaction-induced settlement of river embankments reinforced by floating-type cement treatment method
["Otsubo, Masahide","Miura, Yuta","Ueda, Kazuya","Tanimoto, Shunsuke","Ishihara, Masanori","Sasaki, Tetsuya"]
2025-08-01
期刊论文
(4)
Loose sandy soil layers are prone to liquefaction under strong earthquakes, causing damage to civil engineering structures inside or upon the liquefied ground. According to the present Japanese design guideline on liquefaction countermeasures for river levees, the entire depth of the liquefiable subsoil below river embankments should be improved. However, this approach is not economical against deep liquefiable subsoil. To rationalize the design approach, this contribution investigated the performance of a floating-type cement treatment method, in which only the shallower part of the liquefiable subsoil is reinforced. A series of centrifuge shaking table model tests was conducted under a 50g environment. The depth of improvement (cement treatment) was varied systematically, and the effect of the sloping ground was examined. The experimental results revealed that the settlements of river embankments can be reduced linearly by increasing the depth of improvement. Moreover, the acceleration of embankments can be reduced drastically by the vibration-isolation effect between the cement-treated soil and the liquefiable soil. These effects contribute to the safe retention of the embankment shape even when the liquefied sloping ground causes lateral flows. Towards practical implementation, discussions on the effect of permeability on cement-treated soil were expanded. Furthermore, the stress acting on cement-treated soil during shaking was measured using an acrylic block to explain the occurrence of cracks in the soil. (c) 2025 Japanese Geotechnical Society. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
来源平台:SOILS AND FOUNDATIONS