Liquefaction hazard analysis is crucial in earthquake-prone regions as it magnifies structural damage. In this study, standard penetration test (SPT) and shear wave velocity (Vs) data of Chittagong City have been used to assess the liquefaction resistance of soils using artificial neural network (ANN). For a scenario of 7.5 magnitude (Mw) earthquake in Chittagong City, estimating the liquefaction-resistance involves utilizing peak horizontal ground acceleration (PGA) values of 0.15 and 0.28 g. Then, liquefaction potential index (LPI) is determined to assess the severity of liquefaction. In most boreholes, the LPI values are generally higher, with slightly elevated values in SPT data compared to Vs data. The current study suggests that the Valley Alluvium, Beach and Dune Sand may experience extreme liquefaction with LPI values ranges from 9.55 to 55.03 and 0 to 37.17 for SPT and Vs respectively, under a PGA of 0.15 g. Furthermore, LPI values ranges from 25.55 to 71.45 and 9.55 to 54.39 for SPT and Vs correspondingly. The liquefaction hazard map can be utilized to protect public safety, infrastructure, and to create a more resilient Chittagong City.
Hydraulic conductivity plays a significant role in the evolution of liquefaction phenomena induced by seismic loading, influencing the pore water pressure buildup and dissipation, as well as the associated settlement during and after liquefaction. Experimental evidence indicates that hydraulic conductivity varies significantly during and after seismic excitation. However, most previous studies have focused on experimentally capturing soil hydraulic conductivity variations during the post-shaking phase, primarily based on the results at the stage of excess pore water pressure dissipation and consolidation of sand particles after liquefaction. This paper aims to quantify the variation of hydraulic conductivity during liquefaction, covering both the co-seismic and postshaking phases. Adopting a fully coupled solid-fluid formulation (u-p), a new back-analysis methodology is introduced which allows the direct estimation of the hydraulic conductivity of a soil deposit during liquefaction based on centrifuge data or field measurements. Data from eight well-documented free-field dynamic centrifuge tests are then analysed, revealing key characteristics of the variation of hydraulic conductivity during liquefaction. The results show that hydraulic conductivity increases rapidly at the onset of seismic shaking but gradually decreases despite high pore pressures persisting. The depicted trends are explained using the KozenyCarman equation, which highlights the combined effects of seismic shaking-induced agitation, liquefaction, and solidification on soil hydraulic conductivity during the co-seismic and post-shaking phases.
Moderate-size earthquakes, and the presence of water saturated soil in the near surface can trigger the liquefaction geohazard causing buildings to settle / tilt or collapse, damaging bridges, dams, and roads. A number of paleo-seismic research have focused on the Himalayan area as a potential site for liquefaction. The present study site is in the south of the tectonically active Himalayan foothills and lies in earthquake Seismic Zone III. Therefore, the region can experience earthquakes from nearby regions and can potentially damage civil infrastructures due to liquefaction. The objective of this paper is to determine the susceptibility of alluvial soil deposits to liquefaction for seismic hazard and risk mitigation. Liquefaction geohazard study of alluvial deposits was carried out using shear wave velocity (Vs) profiling. Preliminary assessment of the soil is made by building the average shear wave velocity map up to 30 m depth (Vs30) and by constructing the corrected shear wave velocity (V-s1) maps. It was observed from the Vs30 map that a major portion of the studied area lies in Site Class CD and only a small portion lies in Site Class D. Moreover, it is also noticed from the V(s1 )map that a smaller of the area has V(s1 )lower than the upper limit of V-s1(& lowast; )(215 m/s) below which liquefaction may occur. The region showing lower values of V(s1 )is further examined for liquefaction hazard as per the guidelines given by Andrus et al. (2004). Resistance of the soil to liquefaction, stated as cyclic resistance ratio (CRR), and the magnitude of cyclic loading on the soil induced by the earthquake shaking, stated as cyclic stress ratio (CSR) are computed for the area. Several maps of factor of safety (FS) for different depths are prepared by taking the ratio of CSR and CRR. When FS < 1, the soil is considered prone to liquefaction. Furthermore, susceptibility of soil to liquefaction against different peak horizontal ground surface acceleration (PHGSA) and varying depth of water table is also evaluated in terms of factor of safety. It is observed from this study that for lower levels of PHGSA (up to 0.175 g) the soil can be considered safe. However, the soil becomes more vulnerable to liquefaction when PHGSA is above 0.175 g and with rising water table. The comparison of the factor of safety (FS) obtained using the SPT-N method and the Vs-derived approach shows consistent results, with both methods confirming the absence of liquefaction in the studied soil layers.
Liquefaction resistance and post-liquefaction shear deformation are key aspects of the liquefaction behavior for granular soil. In this study, 3D discrete element method (DEM) is used to conduct undrained cyclic triaxial numerical tests on specimens with diverse initial fabrics and loading history to associate liquefaction resistance and post-liquefaction shear deformation with the fabric of granular material. The influence of several fabric features on liquefaction resistance is first analyzed, including the void ratio, particle orientation fabric anisotropy, contact normal fabric anisotropy, coordination number, and redundancy index. The results indicate that although the void ratio and anisotropy strongly influence liquefaction resistance, the initial coordination number or redundancy index can uniquely determine liquefaction resistance. Regarding post-liquefaction shear deformation, the above quantities do not dictate the shear strain induced after initial liquefaction. Instead, the mean neighboring particle distance (MNPD), a fabric measure previously introduced in 2D and extended to 3D in this study, is the governing factor for post-liquefaction shear. Most importantly, a unique relationship between the initial MNPD and ultimate saturated post-liquefaction shear strain is identified, providing a measurable state parameter for predicting the post-liquefaction shear of sand.
The influence of seismic history on the liquefaction resistance of saturated sand is a complex process that remains incompletely understood. Large earthquakes often consist of foreshocks, mainshocks, and aftershocks with varying magnitudes and irregular time intervals. In this context, sandy soils undergo two interdependent processes: (i) partial excess pore water pressure (EPWP) generation during foreshocks or moderate mainshocks, where seismic loadings elevate EPWP without causing full liquefaction and (ii) incomplete EPWP dissipation between seismic events due to restricted drainage. These processes leave behind persistent residual EPWP, reducing the liquefaction resistance during subsequent shaking. A series of cyclic triaxial tests simulating these mechanisms revealed that liquefaction resistance increases when the EPWP ratio r(u) < 0.6-0.8 (peaking at r(u) similar to 0.4) but decreases sharply at higher r(u). Crucially, EPWP generation during seismic loading plays a dominant role in resistance evolution compared to reconsolidation effects. Threshold lines (TLs) mapping r(u), the reconsolidation ratio (RR), and peak resistance interval (the range of r(u) where the peak liquefaction resistance is located) indicates that resistance decreases above TLs and increases below them, with higher cyclic stress ratios (CSR) weakening these effects. These findings provide a unified framework for assessing liquefaction risks under realistic multi-stage seismic scenarios.
The bank protection measures of waterways shall become more environmentally friendly in the future including the use of plants instead of stones. The low levels of protection provided by plants in the early phase after planting requires a process-based understanding of soil-wave-interaction. One process that is considered essential is liquefaction where the soil undergoes a phase-change from solid-like to fluid-like behaviour which could reduce the safety of the system. The aim of this publication is to analyse the results of column experiments on wave-induced soil liquefaction and to develop a numerical model which is able to describe the entire process from the pre-liquefaction phase to the following reconsolidation in order to support the analysis of liquefaction experiments. Numerical simulations of the column experiments were done using a fully coupled hydro-mechanical model implemented in the open-source software FEniCS. A permeability model derived from granular rheology allows the simulation of dilute as well as dense suspensions and sedimented soil skeletons. The results of the simulations show a good agreement with the experimental data. Theoretical limits in the liquefied state are captured without the common modelling segmentation into pre-and post-liquefaction phase. Due to the modular structure of the implementation, the constitutive setting can be adjusted to incorporate more complex formulations in order to study the influence of wall friction and non-linearity in soil behaviour.
This study explores the effectiveness of soft viscoelastic biopolymer inclusions in mitigating cyclic liquefaction in loosely packed sands. This examination employs cyclic direct simple shear testing (CDSS) on loose sand treated with gelatin while varying the gelatin concentration and the cyclic stress ratio (CSR). The test results reveal that the inclusion of soft, viscoelastic gelatin significantly reduces shear strain and excess pore pressure during cyclic shear. Liquefaction potential, defined as the number of cycles to liquefaction (NL) at an excess pore pressure ratio (ru = Delta u/sigma ' vo) of 0.7, is substantially improved in gelatin-treated sands compared to gelatin-free sands. This improvement in liquefaction resistance is more pronounced as the inclusion stiffness increases. Furthermore, the viscoelastic pore-filling inclusion helps maintain skeletal stiffness during cyclic shearing, resulting in a higher shear modulus in gelatin-treated sand in both small and large-strain regimes. At a grain scale, pore-filling viscoelastic biopolymers provide structural support to the skeletal frame of a loosely packed sand. This pore filler mitigates volume contraction and helps maintain the effective stress of the soil structure, thereby reducing liquefaction potential under cyclic shearing. These findings underscore the potential of viscoelastic biopolymers as bio-grout agents to reduce liquefaction risk in loose sands.
The mitigation of seismic soil liquefaction in sand with fine content presents a challenge, demanding efficient strategies. This research explores the efficacy of Microbial-Induced Partial Saturation (MIPS) as a biogeotechnical technique to improve the liquefaction resistance of sandy soils with plastic fines. By leveraging the natural metabolic processes of indigenous microorganisms, this method introduces biogenic gas production within the soil matrix, effectively reducing its degree of saturation. This partial desaturation alters the soil's response to cyclic loading, aiming to mitigate the risk of liquefaction under dynamic loading conditions. Experimental results from a series of undrained strain-controlled cyclic shear tests reveal that even a modest reduction in saturation significantly enhances the soil's stability against seismic-induced liquefaction. The investigation extends to analyzing the effectiveness of the MIPS treatment in sands with low-plasticity clay content, offering insights into the interaction between microbial activity, soil texture, and liquefaction potential. Results show that while plasticity plays a key role in improving the cyclic response of soils, the influence of MIPS treatment remains noteworthy, even in sand with plastic fines. Additionally, a modified predictive formulation is introduced, incorporating a calibrated parameter to account for the influence of fines' plasticity on excess pore pressure generation.
In practical engineering, earthquake-induced liquefaction can occur more than once in sandy soils. The existence of low-permeable soil layers, such as clay and silty layers in situ, may hinder the dissipation of excess pore pressure within sand (or reconsolidation) after the occurrence of liquefaction due to the mainshock and therefore weaken the reliquefaction resistance of sand under an aftershock. To gain more mesomechanical insights into the reduced reliquefaction resistance of the reconsolidated sand under aftershock, a series of discrete element simulations of undrained cyclic simple shear tests were carried out on granular specimens with different degrees of reconsolidation. During both the first (mainshock) and second (aftershock) cyclic shearing processes, the evolution of the load-bearing structure of the granular specimens was quantified through a contact-normal-based fabric tensor. The interplay between mesoscopic structure evolutions and external loadings can well explain the decrease in reliquefaction resistance during an aftershock.
It is generally believed that loess is not prone to liquefaction. However, on December 18, 2023, a magnitude 6.2 earthquake occurred in Gansu Province, China (35.70 degrees N, 102.79 degrees E), triggering a large-scale loess liquefactioninduced flow slide spanning 2.5 km, approximately 10 km from the epicenter. To understand the disastercausing mechanism, this study obtained the physical and mechanical properties of loess in the source area through field surveys and laboratory tests, and characterized the liquefaction behavior of saturated loess layers. The findings indicate that the strong ground motion, saturated loess, and gentle slope collectively contribute to the prevailing dynamic, geological, and topographic conditions. The saturated loess layer primarily comprises silt particles with particle sizes less than 0.075 mm accounting for approximately 92.2 % of its composition. The saturated loess layer at a depth of 11m was liquefied under the action of seismic waves with a peak ground acceleration of 0.40 g, however, due to the unique pore structure of loess, it is observed that pore pressure development rate lags behind strain rise rate during liquefaction process. The majority of strain accumulation occurred during a distinct post-peak stabilization phase following peak seismic activity while pore pressure continues to escalate even after vibration ceases. The results provide scientific insights into understanding the cause contributing to loess liquefaction induced-flow slide disasters due to earthquake.