Liquefaction response and soil fabric evolution of deep sand ground in centrifuge model test

Deep sand ground Centrifuge model test Generalized scaling law Liquefaction Soil fabric evolution
["Yang, Xiao-Tian","Zhou, Yan-Guo","Ma, Qiang","Chen, Yun-Min"] 2025-07-01 期刊论文
Earthquake-induced soil liquefaction causes ground and foundation failures, and it challenges the scientific community to explore the liquefaction problem in deep deposit under strong shaking. Due to the capacity limitation of physical modelling facility, it is difficult to reproduce soil liquefaction response of deep sand ground by centrifuge shaking table test. To address this problem, a suite of centrifuge model tests were conducted with the aid of Iai's Type III generalized scaling law (i.e., GSL) to observe the liquefaction response of deep sand ground, where Models 1 and 2 were used to validate the GSL and Model 3 with the validated GSL stands for the deep sand ground with prototype depth of 80 m. The test results of Models 1 and 2 indicate that GSL generally performs well for small-strain shear modulus, nonlinear dynamic response of acceleration and the generation of excess pore water pressure, but leaves considerable errors for post-shaking dissipation process and ground settlement with large plastic strain. The test results of Model 3 indicate that liquefaction is also possible in depth of 30-40 m under shaking event of PBA = 0.4 g and Mw = 7.5. For deeper depth without triggering of liquefaction, a depthdependent power function relationship between the peak excess pore water pressure and Arias intensity has been established. The test results also revealed that consolidation and earthquake shaking history contribute to the development of soil anisotropy in a deep ground, leading to a continuous increase of anisotropy degree, which could be evaluated using the small-strain shear moduli in different stress planes under orthogonal stress conditions.
来源平台:ENGINEERING GEOLOGY