Walking in Mud: Modeling, Control, and Experiments of Quadruped Locomotion
["Godon, Simon","Prados, Carlos","Chemori, Ahmed","Ristolainen, Asko","Kruusmaa, Maarja"]
2025-06-06
期刊论文
Soft wet grounds such as mud, sand, or forest soils, are difficult to navigate because it is hard to predict the response of the yielding ground and energy lost in deformation. In this article, we address the control of quadruped robots' static gait in deep mud. We present and compare six controller versions with increasing complexity that use a combination of a creeping gait, a foot-substrate interaction detection, a model-based center of mass positioning, and a leg speed monitoring, along with their experimental validation in a tank filled with mud, and demonstrations in natural environments. We implement and test the controllers on a Go1 quadruped robot and also compare the performance to the commercially available dynamic gait controller of Go1. While the commercially available controller was only sporadically able to traverse in 12 cm deep mud with a 0.35 water/solid matter ratio for a short time, all proposed controllers successfully traversed the test ground while using up to 4.42 times less energy. The results of this article can be used to deploy quadruped robots on soft wet grounds, so far inaccessible to legged robots.
来源平台:IEEE-ASME TRANSACTIONS ON MECHATRONICS