共检索到 107

There has been a growing interest in controlled low strength material CLSM due to its engineering features, such as self-leveling and early strength development, as well as it potential for utilizing industrial waste. Still, the dynamic properties on CLSM are rarely studied. This study evaluates the feasibility of red mud as a partial aggregate replacement in foamed-lightweight CLSM, incorporating high-carbon fly ash and preformed foam. We varied both the red mud contents RMc and foam volume ratio FVR within the mixtures and examined their impact on unconfined compressive strength and dynamic properties including shear modulus G and damping ratio D. The results reveal that the red mud enhances foam stability, leading to more uniform pore structures and increased porosity, which reduces bulk densities. Despite higher porosity, red mud serves as a strong alkaline activator, enhancing geopolymer reactions of high-carbon fly ash and thereby increasing both compressive strength and initial shear modulus G0. Interestingly, increasing FVR had minimal impact on the D, while higher RMcnotably increased D, highlighting its distinct role in energy dissipation. The red mud-incorporated foamed CLSM exhibits strain-dependent normalized shear modulus G/G0 comparable to that of gravel, while its D is 40-100 % higher than gravel or gravelly soil at shear strain of 1.10-5, which corresponds to typical traffic-induced vibration levels. Moreover, theoretical volumetric-gravimetric relationships are introduced to account for the combined effects of FVR and RMcon CLSM behavior. These findings demonstrate that the red mud included foamed CLSM can be utilized as advanced structural backfill material capable of effectively mitigating the vibrations induced by traffic, low-amplitude seismic events, and mechanical sources.

期刊论文 2025-12-01 DOI: 10.1016/j.cscm.2025.e04893 ISSN: 2214-5095

The soil strength of soft clay is influenced by strain rate effect. Models considering strain rate effect always ignore the impact of loading rate on pore pressure and have poor applicability to 3D engineering problems. Based on the classic inelastic core boundary surface model, a logarithmic rate function representing the strain rate effect of soft soil was introduced to the hardening law. A new parameter H was added to adjust the plastic modulus while another new parameter mu is introduced to account for the strain rate effect. A rate-effect boundary surface constitutive model suitable for saturated clay was subsequently proposed. Combined with the implicit integral numerical algorithm and stress-permeability coupling analysis, the innovative model was implemented in the finite element software and validated by comparing with the results of triaxial tests. By analysing the rate-effect of 11 types of soft soil, a formula to calculate the rate parameter was derived. The developed model was used to calculate the undrained vertical bearing capacity and sliding resistance of a movable subsea mudmat. The mudmat frictional coefficient from soil undrained to partial drained and finally undrained state was obtained and compared with those from the Modified Cam-Clay model. Identical results were obtained without considering the rate effect. When considering the strain rate effect on the improvement of soil strength, the friction resistance coefficient initially decreases and then increases with the decrease of the sliding speed, eventually stabilising after reaching the limit value. The rate-effect on the friction resistance coefficient is most prominent under undrained conditions with high sliding speeds. The soil strain rate effect is suggested to be considered in the design of the subsea mudmat avoid underestimating the friction resistance.

期刊论文 2025-11-01 DOI: 10.1016/j.soildyn.2025.109564 ISSN: 0267-7261

The existence of rock weathering products has an important effect on the infiltration of water in the soil. Understanding the mechanism of water infiltration in a mixed soil and weathered rock debris medium is highly important for soil science and hydrology. The purpose of this study is to explore the effects of mudstone hydrolysis on water infiltration in the soil under different mixing ratios (0-70 %) of weathered mudstone contents. Soil column experiments and numerical modelling were used to study the processes of hydrolysis of weathered mudstone and water infiltration in the mixed medium. The results revealed that water immersion can cause the dense mudstone surface to fall off, thus forming pores, and that the amount of these pores first increase but then decrease over time. The disintegration of post-hydrolysis mudstone debris occurs mainly among particles ranging from 2-2000 mu m, predominantly transforming sand particles into finer fractions. Increasing the mudstone content in the soil from 0 % to 50 % enhances the infiltration rate and cumulative infiltration volume. However, when the mudstone content exceeds 50 %, these parameters decrease. The mudstone weathering products promote water infiltration in the soil within a certain range of mudstone contents, but as the ratio of weathered products increases, excessive amounts of mudstone hinder the movement of water in the soil. The identified transformation phenomenon suggests that the infiltration capacity of mixed soil will not scale linearly with mudstone content. The findings enable some mitigation strategies of geologic hazards based on the hydrological stability in heterogeneous environments.

期刊论文 2025-10-01 DOI: 10.1016/j.jhydrol.2025.133254 ISSN: 0022-1694

Red mud is a kind of solid waste, which can be used as engineering roadbed filler after proper treatment. Due to the special physical and chemical properties of red mud, such as high liquid limit and high plasticity index, it may affect the stability of soil. Therefore, red mud can be improved by adding traditional inorganic binders such as lime and fly ash to improve its road performance as roadbed filler. Red mud-based modified silty sand subgrade filler will be affected by dry-wet alternation caused by various factors in practical application, thus affecting the durability of the material. In order to study the strength degradation characteristics and microstructure changes of red mud, lime and fly ash modified silty sand subgrade filler after dry-wet cycle, the samples of different curing ages were subjected to 0 similar to 10 dry-wet cycles, and their compressive strength, microstructure and environmental control indexes were tested and analyzed. The results show that the sample cured for 90 days has the strongest toughness and the best ability to resist dry and wet deformation. With the increase of the number of dry-wet cycles, the mass loss rate of the sample is in the range of 6 similar to 7 %, and the unconfined compressive properties and tensile properties decrease first and then increase. There are continuous hydration reactions and pozzolanic reactions in the soil, but the degree of physical damage in the early stage of the dry-wet cycle is large, and the later cementitious products have a certain offsetting effect on the structural damage. The internal cracks of the sample without dry-wet cycle are less and the structure is dense. After the dry-wet cycle, the microstructure of the sample changed greatly, and the cracks increased and showed different forms. Through SEM image analysis, it was found that the pore structure of the sample changed during the dry-wet cycle, which corresponded to the change law of mechanical properties. After wetting-drying cycles, the leaching concentration of heavy metals in the modified soil increased slightly, but the overall concentration value was low, which was not a toxic substance and could be used as a roadbed material. The study reveals the influence of dry-wet cycle on the strength characteristics and microstructure of red mud, lime and fly ash synergistically improved silty sand, which provides a technical reference for the engineering application of red mud-based materials.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2024.e04116 ISSN: 2214-5095

The environmental impact of red mud leachate, particularly from tailings ponds, has become a significant concern due to its highly alkaline nature and potential to cause widespread soil and water contamination. Addressing this issue requires effective strategies for mitigating the leakage of contaminants, such as heavy metals and hazardous alkalis, into surrounding ecosystems. This study explores the use of fly ash-modified clay liners as a solution to contain and treat red mud leachate pollutants, including heavy metals and alkalis. Macro-scale tests, such as permeation and unconfined compression tests, combined with micro-scale analyses (XRD, SEM, BET), investigate the influence of varying fly ash content on the hydraulic conductivity, mechanical properties, and microstructure of the clay liners. The findings show that fly ash significantly reduces the hydraulic conductivity of the liners, improving their effectiveness in preventing seepage. It also enhances the liners' ability to adsorb heavy metal ions and increases their mechanical strength, especially cohesion, with optimal performance at a 9 % fly ash content. The study further reveals that pozzolanic reactions in the alkaline environment of red mud lead to the formation of cementitious gel binders (C-S-H, C-A-H), which reduce pore sizes and create a denser, more impermeable structure. These improvements in both physical and chemical stability demonstrate the potential of fly ash-modified clay liners as an effective, sustainable solution for managing red mud tailings ponds. This study provides valuable support for environmental management of red mud tailings ponds and the sequestration of red mud leachate waste.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2024.e04190 ISSN: 2214-5095

Foamed lightweight soil with red mud (FLS-RM), a new type of subgrade material commonly used in projects such as bridge backfill. In engineering applications, FLS-RM tends to crack after pouring to weaken its properties, which limits its further application, and this situation can be improved by adding fiber into FLS-RM. Thus, this study developed a new type of FLS-RM reinforced by polypropylene fibers, polyester fibers, and kenaf fibers to investigate the changes in the mechanical properties of FLS-RM and its deterioration mechanism. The experimental results showed that the mechanical properties of FLS-RM could be enhanced by the fibers, and the compressive and flexural strengths of FLS-RM specimens reinforced by polypropylene fiber reached 0.87 MPa and 0.85 MPa, respectively, when the fiber length was 12 mm and the content was 0.75 wt% and 1.00 wt%. Design Expert was used to analyze the experimental data to obtain the pattern of the effect of different fiber conditions on the strength of FLS-RM and optimal fiber conditions, and to establish the strength equation. The EDS results revealed that the red mud can be excited to generate an aluminosilicate gel filling in the skeleton under alkaline conditions. The results of the microscopic analysis indicated that the close bonding between the fibers and the matrix increased the friction and mechanical bite between the independent blocks and enhanced the strength of the specimens.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04368 ISSN: 2214-5095

This study investigated the dynamic properties of red mud (RM)-reinforced volcanic ash (VA) by dynamic triaxial tests. The effects of stress state (dynamic stress sigma d, confining stress sigma 3), dynamic frequency (f) and load waveform (F) on the accumulative plastic strain (epsilon p) have been investigated. The findings indicate a significant influence of the stress state on epsilon p. When sigma d reaches 120 kPa, the specimens exhibit insufficient strength, leading to shear failure. As sigma 3 increases, the dynamic stresses that lead to specimen destabilization also exhibit an upward trend. The effect of f on epsilon p is limited. The epsilon p does not exhibit a clear or consistent developing pattern with increasing f. As for the F, the epsilon p exhibited by the specimens subjected to sinusoidal wave loads is less than that observed under trapezoidal wave loads. Shakedown theory classifies deformation responses into plastic shakedown, plastic creep and incremental collapse. The epsilon p curve patterns of RM-reinforced VA exhibit plastic shakedown and incremental collapse without significant plastic creep characteristics under cyclic loading. A predictive model for epsilon p under cyclic loading is established, which has good predictability. This study presents a novel application of VA and RM, offering substantial research insights into waste recycling.

期刊论文 2025-06-17 DOI: 10.1007/s11440-025-02649-0 ISSN: 1861-1125

Soft wet grounds such as mud, sand, or forest soils, are difficult to navigate because it is hard to predict the response of the yielding ground and energy lost in deformation. In this article, we address the control of quadruped robots' static gait in deep mud. We present and compare six controller versions with increasing complexity that use a combination of a creeping gait, a foot-substrate interaction detection, a model-based center of mass positioning, and a leg speed monitoring, along with their experimental validation in a tank filled with mud, and demonstrations in natural environments. We implement and test the controllers on a Go1 quadruped robot and also compare the performance to the commercially available dynamic gait controller of Go1. While the commercially available controller was only sporadically able to traverse in 12 cm deep mud with a 0.35 water/solid matter ratio for a short time, all proposed controllers successfully traversed the test ground while using up to 4.42 times less energy. The results of this article can be used to deploy quadruped robots on soft wet grounds, so far inaccessible to legged robots.

期刊论文 2025-06-06 DOI: 10.1109/TMECH.2025.3560588 ISSN: 1083-4435

This study investigates the potential application of a blend, termed GGRM, consisting of red mud (RM) and ground-granulated blast furnace slag (GGBS), for stabilizing subgrade expansive soil. RM, an industrial waste from aluminium refineries, poses environmental concerns due to its high alkalinity and presence of heavy metals. Despite its increased utilization in construction sector, research on its role in soil stabilization is limited. With this in mind, RM has been used as an activator for GGBS, to create synergy between these industrial wastes with an objective to utilize this blend for stabilization of black cotton soil (BCS). Therefore, laboratory investigations were conducted to assess the strength of BCS stabilized with GGRM comprising varying proportions of GGBS and RM (0:100, 70:30, 50:50, 30:70, and 100:0 by weight). Further, the optimal GGRM quantities were evaluated by mixing it in different proportions (5-30% by weight). This study also examined the effect of curing on strength properties and leaching behaviour and investigated the associated mechanisms through microstructural studies (XRD, XRF, SEM, and FTIR analysis). The leachate potential was assessed using ICP-OES analysis. Results indicated a maximum sevenfold improvement in unconfined compressive strength of BCS, from 131 to 920 kPa, after 28 days of curing in 70:30 combinations with 25% GGRM content. Furthermore, leaching of heavy metals from stabilized soils are within the permissible limits of hazardous waste management regulations. In conclusion, RM-activated GGBS blends emerged as a potentially sustainable binder, enhancing the strength of expansive soil for subgrade applications.

期刊论文 2025-06-01 DOI: 10.1007/s13369-024-09171-7 ISSN: 2193-567X

The physicochemical combination method (PCCM) is a new integrated method for treating and reusing large volumes of slurry-like mud (MS). To study the effects of freezing-thawing (FT) cycles on the mechanical properties of MS treated by the PCCM, unconfined compression tests (UCTs) and microstructural tests are both conducted on PCCM-treated MS samples with different combinations of FT cycles, initial water contents (wei), and cementitious binder contents (wc). The experimental results indicate that the unconfined compressive strength (UCS) and the elastic modulus (E) of PCCM-treated MS decrease exponentially when the FT cycles increase from 0 to 15. For the PCCM-treated MS samples subjected to 15 FT cycles, the reduction degree of their strength, as well as deformation resistance, is more sensitive to the variation of wc compared to that of wei. Meanwhile, the UCS and E of PCCM-treated MS samples are higher than those of the corresponding MS samples treated by the conventional cement solidification method (CCSM). The superior resistance to FT cycles of PCCM-treated MS is attributed to the presence of APAM, which not only facilitates the aggregation of soil particles but also enhances the dewatering efficiency of MS. Notably, the E/UCS value of CCSM-treated MS is 1.25 times larger than that of PCCM-treated MS, indicating the application of PCCM can significantly enhance the toughness of the treated MS.

期刊论文 2025-06-01 DOI: 10.1007/s10064-025-04322-y ISSN: 1435-9529
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共107条,11页