Relating normal stiffness to permeability of a deformed self-affine rough fracture using its geometric properties

China Fracture closure Elastic deformation Fluid flow Permeability Normal stiffness Scaling relationship
["Deng, Qinglin","Shangguan, Jianming","Ji, Yinlin","Cacace, Mauro","Schmittbuhl, Jean","Bloecher, Guido"] 2025-05-01 期刊论文
(5)
In subsurface projects where the host rock is of low permeability, fractures play an important role in fluid circulation. Both the geometrical and mechanical properties of the fracture are relevant to the permeability of the fracture. To evaluate this relationship, we numerically generated self-affine fractures reproducing the scaling relationship of the power spectral density (PSD) of the measured fracture surfaces. The fractures were then subjected to a uniform and stepwise increase in normal stress. A fast Fourier transform (FFT)-based elastic contact model was used to simulate the fracture closure. The evolution of fracture contact area, fracture closure, and fracture normal stiffness were determined throughout the whole process. In addition, the fracture permeability at each step was calculated by the local cubic law (LCL). The influences of roughness exponent and correlation length on the fracture hydraulic and mechanical behaviors were investigated. Based on the power law of normal stiffness versus normal stress, the corrected cubic law and the linear relationship between fracture closure and mechanical aperture were obtained from numerical modeling of a set of fractures. Then, we derived a fracture normal stiffness-permeability equation which incorporates fracture geometric parameters such as the root-mean-square (RMS), roughness exponent, and correlation length, which can describe the fracture flow under an effective medium regime and a percolation regime. Finally, we interpreted the flow transition behavior from the effective medium regime to the percolation regime during fracture closure with the established stiffness-permeability function. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
来源平台:JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING