Aerosols can alter atmospheric stability through radiative forcing, thereby changing mean and daily extreme precipitation on regional scales. However, it is unclear how extreme sub-daily precipitation responds to aerosol radiative effects. In this study, we use the regional climate model (RCM) Consortium for Small-scale Modeling (COSMO) to perform convection-permitting climate simulations at a kilometer-scale (0.04 degrees/similar to 4.4 km) resolution for the period 2001-2010. By evaluating against the observed hourly precipitation-gauge data, the COSMO model with explicit deep convection can effectively reproduce sub-daily and daily extreme precipitation events, as well as diurnal cycles of summer mean precipitation and wet hour frequency. Moreover, aerosol sensitivity simulations are conducted with sulfate and black carbon aerosol perturbations to assess the direct and semi-direct aerosol effects on extreme sub-daily precipitation in the COSMO model. The destabilizing effects associated with decreased sulfate aerosols intensify extreme sub-daily precipitation, while increased sulfate aerosols tend to induce an opposite change. In contrast, the response of extreme sub-daily precipitation to black carbon aerosol perturbations exhibits a nonlinear behavior and potentially relies on geographical location. Overall, the scaling rates of extreme precipitation intensities decrease and approach the Clausius-Clapeyron rate from hourly to daily time scales, and the responses to sulfate and black carbon aerosols vary with precipitation durations. This study improves the understanding of aerosol radiative effects on sub-daily extreme precipitation events in RCMs.
2024-12-01 Web of ScienceAtmospheric Brown Carbon (BrC) with strong wavelength-dependence light-absorption ability can significantly affect radiative forcing. Highly resolved emission inventories with lower uncertainties are important premise and essential in scientifically evaluating impacts of emissions on air quality, human health and climate change. This study developed a bottom-up inventory of primary BrC from combustion sources in China from 1960 to 2016 with a spatial resolution at 0.1 degrees x 0.1 degrees, based on compiled emission factors and detailed activity data. The primary BrC emission in China was about 593 Gg (500-735 Gg as interquartile range) in 2016, contributing to 7% (5%-8%) of a previously estimated global total BrC emission. Residential fuel combustion was the largest source of primary BrC in China, with the contribution of 67% as the national average but ranging from 25% to 99% among different provincial regions. Significant spatial disparities were also observed in the relative shares of different fuel types. Coal combustion contribution varied from 8% to 99% across different regions. Heilongjiang and North China Plain had high emissions of primary BrC. Generally, on the national scale, spatial distribution of BrC emission density per area was aligned with the population distribution. Primary BrC emission from combustion sources in China have been declined since a peak of similar to 1300 Gg in 1980, but the temporal trends were distinct in different sectors. The high-resolution inventory developed here enables radiative forcing simulations in future atmospheric models so as to promote better understanding of carbonaceous aerosol impacts in the Earth's climate system and to develop strategies achieving co-benefits of human health protection and climate change.
2024-12-01 Web of ScienceThe climate in Northwest China (NWC) has undergone a warming and wetting trend (WWT) since the 1980s, which has attracted considerable attention from the scientific and policy communities. However, the majority of previous studies have focused on overall effects of WWT, and very few have examined how land surface system responds to climate warming or wetting trend, respectively. For this purpose, this study uses the Community Land Model (CLM5) driven by the Chinese Meteorological Forcing Dataset (CMFD) to conduct four modeling experiments: a control experiment (CTRL) and three sensitivity experiments, in which the annual trend of air temperature (NonWarm), precipitation (NonWet), and both (NonWWT) are removed from the CMFD from 1979 to 2018. Compared to CTRL, the land hydrological variables (i.e. soil moisture, runoff and evapotranspiration) show a visible reduction in magnitude, interannual variability, as well as annual trend in NonWet, while they are enhanced in NonWarm. In both NonWarm and NonWet, the magnitude and trend of both net radiation and sensible heat fluxes increase, with a more pronounced change in NonWWT. Further analysis indicates that the land surface processes are more sensitive to wetting trend than to warming trend. Among all land surface hydrological variables and energy variables, runoff and snow cover fraction are the most susceptible to climate change. Overall, the effects of climate change in Ta and Pr on surface hydrological variables are non-linearly offsetting, while the effects on surface energy budgets are non-linearly superimposed. Compared to warming trend, wetting trend plays a larger impact on the variability of land surface processes in NWC.
2024-10-01 Web of ScienceChina experiences severe particulate matter (PM) pollution. Although a monitoring network for PM2.5 (diameter < 2.5 mu m) has been set up in more than 100 major Chinese cities, insufficient spatial coverage of observations limits the study of the temporal and spatial characteristics, influencing factors, and component of PM2.5. In this study, we conducted a one year air quality simulation using a regional climate-chemistry model and evaluated the simulation's performance based on in situ observations concerning meteorological elements and PM2.5 concentrations. The simulated results showed that, higher PM2.5 concentrations appeared in northern China and the Sichuan Basin, and the maximal value occurred in winter. Furthermore, Vertical PM2.5 concentrations presented a gradual decreasing trend from the surface, whereas in southern coastal cities the profiles were unsteady with a secondary peak in the lower layer. Meteorological conditions were conducive to both pollutant diffusion and removal in summer, whereas stagnant conditions appeared in winter, characterized by high sea level pressure (SLP), the lowest planetary boundary layer height (PBLH), and 2-m temperature (T2). In provincial capital cities, PM2.5 was positively correlated with residential emissions but negatively correlated with precipitation, 10-m wind speed, T2, PBLH, and industrial emissions. Finally, we utilized the simulation results to investigate the component variations of PM2.5. Results indicated that primary PM2.5 components had significantly higher concentrations in northern China where residential heating is the major source of PM2.5 emissions, whereas they had lower concentrations in southern China. Secondary components played a crucial role in PM2.5 mass in eastern China. This study provided a clear perspective of seasonal variations, horizontal and vertical distributions of PM2.5 and its components and influence factors, which could be used in subsequent studies to investigate the formation mechanism and emission sources of PM2.5.
2024-09Investigation of mercury (Hg) from atmospheric precipitation is important for evaluating its ecological impacts and developing mitigation strategies. Western China, which includes the Tibetan Plateau and the Xinjiang Uyghur Autonomous Region, is one of the most remote region in the world and is understudied in regards to Hg precipitation. Here we report seesaw-like patterns in spatial variations of precipitation Hg in Western China, based on Hg speciation measurements at nine stations over this remote region. The Hg fraction analyzed included total Hg (HgT), particulate-bound Hg (HgP) and methylmercury (MeHg). Spatially, HgT concentrations and percentage of HgP in precipitation were markedly greater in the westerlies domain than those in the monsoon domain, but the higher wet HgT flux, MeHg concentration and percentage of MeHg in precipitation mainly occurred in the monsoon domain. Similar spatial patterns of wet Hg deposition were also obtained from GEOSChem modeling. We show that the disparity of anthropogenic and natural drivers between the two domains are mainly responsible for this seesaw-like spatial patterns of precipitation Hg in Western China. Our study may provide a baseline for assessment of environmental Hg pollution in Western China, and subsequently assist in protecting this remote alpine ecosystem.
2024-08Observations from 1,047 meteorological stations from September 1, 2006 to August 31, 2015 revealed regional differences in the freezing and thawing processes of seasonally frozen ground (SFG) across China. SFG generally undergoes a one-way freezing process (i.e., top-down), and the stations with a large freeze depth generally experienced long freeze durations. During the thawing process, soil is generally characterized by two-way thawing (i.e., top-down and bottom-up) in the region north of 35 ' N, ' N, especially north of 30 ' N ' N (except in northeastern China). The onset of thawing from the bottom occurs earlier than that from the top at most stations in the two-way thawing region. The stations exhibiting one-way thawing (i.e., bottom-up) were mainly located on the southern edge of eastern China (east of 110 degrees E) degrees E) and in southern part of Xinjiang and southeast part of the Qinghai-Tibet Plateau. The freezing process lasts several days to more than four months longer than the soil thawing process, and this difference tends to be larger in high-latitude and high-altitude regions. All of the sites experienced a discontinuous freeze-thaw process, the station-average duration of which was less than a quarter of that of the continuous freeze-thaw process. Strong associations of soil freeze depth with air temperature (as characterized by the air freezing index and air thawing index) implied a dominant influence of air temperature on the soil freeze-thaw process. During the freezing process, this relationship was partially modulated by snow cover in snowy regions, such as northeast China, northwest China, and the eastern Tibetan Plateau. This paper provides the first overview of regional differences in the freezing and thawing processes of SFG over China, and the findings improve our understanding of the soil freeze-thaw process and provide important information to support research into regional landscapes, ecosystems, and hydrological processes.
2024-08-01 Web of ScienceEmpirical orthogonal function (EOF) and correlation analyses were employed to investigate the winter and spring snow depth in Eurasia and its relationship with Eastern China precipitation based on the observed and reanalyzed data from 1980 to 2016. The results show that the winter and spring snow cover in Eurasia not only highlights a decreasing trend due to global warming (the first EOF mode, its variance accounted for 24.4% and 22.6% of the total variance) but also exhibits notable interdecadal variation (the second EOF mode, its variance accounted for 10.2% and 11.5% of the total variance). The second EOF mode of winter snow depth in Eurasia is characterized by a west-east dipole pattern. It was observed that the spatial correlation pattern between the EOF2 of Eurasian snow depth and summer precipitation in China closely resembles the meridional quadrupole structure of the third EOF mode of summer precipitation in China. This pattern is characterized by excessive rainfall in Northeast China and the lower-middle reaches of the Yangtze River, and less rainfall over the Yellow River basin and southern China. The EOF mode of spring snow depth not only reflects the declining trend but also regulates precipitation in Eastern China. The possible mechanisms by which snow depth causes changes in soil moisture and subsequently affects atmospheric circulation are then explored from the perspective of the hydrological effects of snow cover. Decreased (Increased) snow depth in Eurasia during the winter and spring directly leads to diminished (increased) soil moisture while increasing (decreasing) net radiation and sensible heat flux at the surface. The meridional distribution of surface temperature also exhibits a dipole pattern, leading to enhanced subtropical westerly jet in the upper troposphere. The Eurasian snow cover anomalies pattern triggered an anomalous mid-latitude Eurasian wave train, which strengthened significantly in the Western Siberian Plain. It then splits into two branches, one continuing to propagate eastward at high latitudes and the other shifting towards East Asia, thereby impacting precipitation in Eastern China. This work indicates that the second EOF mode of Eurasian snow cover can impact the precipitation variability in Eastern China during the same period and in summer on an interdecadal scale.
2024-08-01 Web of ScienceEcosystems at the southern edge of the permafrost distribution are highly sensitive to global warming. Changes in soil freeze-thaw cycles can influence vegetation growth in permafrost regions. Extant studies mainly focused on analyzing the differences of vegetation dynamics in different permafrost regions. However, the intrinsic drivers of permafrost degradation on vegetation growth remain elusive yet. Based on the top temperature of permafrost (TTOP) model, we simulated the spatial distribution of permafrost in Northeast China (NEC) from 2001 to 2020. Using the data of the vegetation Net Primary Productivity (NPP), vegetation phenology, climate and permafrost phenology, and analytical methods including partial correlation, multiple linear regression, and path analysis, we explored the response of vegetation growth and phenology to soil freeze-thaw changes and climate change under different degrees of permafrost degradation. Overall, the start date of the growing season (SOS) was very sensitive to the start date of soil thaw (SOT) changes, and multiple regression analyses showed that SOT was the main factor influencing SOS in 41.8% of the NEC region. Climatic factors remain the main factors affecting vegetation NPP in NEC, and the results of partial correlation analysis showed that only 9.7% of the regional duration of soil thaw (DOT) had a strong correlation with vegetation NPP. Therefore, we determined the mechanism responsible for the soil freeze-thaw changes and vegetation growth relationship using the path analysis. The results indicated that there is a potential inhibitory effect of persistent permafrost degradation on vegetation growth. Our findings would contribute to the improvement of process-based models of forest dynamics in the boreal region, which would help to plan sustainable development and conservation strategies in permafrost areas.
2024-06-29 Web of ScienceIdentifying the changes in terrestrial water storage is essential for a comprehensive understanding of the regional hydrological mass balance under global climate change. This study used a partial least square regression model to fill the observation gaps between GRACE and GRACE-FO and obtained a complete series of terrestrial water storage anomaly data from April 2002 to December 2020 from southeast China. We investigated the variations in terrestrial water storage anomalies in the region and the influencing factors. The study revealed that terrestrial water storage (TWS) anomalies have been increasing in the region, with an average increase of 0.33 cm/yr (p < 0.01). The intra-annual variation showed a positive anomaly from March to September and a negative anomaly in other months. Terrestrial water storage anomalies increased in most regions (especially in the central and northern parts), whereas they decreased in the southern parts. In terms of the components, the soil moisture storage (SMS) contributes 58.3 % and the surface water storage (SWS, especially reservoirs water storage) contributes 41.4 % to the TWS. The study also found that changes in the precipitation explain approximately 71.7 % of the terrestrial water storage variation, and reservoirs contributes to the remaining 28.3 %. These results are essential for understanding the changes in the hydrological cycle and developing strategies for water management in Southeast China.
2024-05-01 Web of ScienceIn the early 21st century, Southwest China (SWC) frequently experienced extreme droughts and severe haze pollution events. Although the meteorological causes of these extreme droughts have been widely investigated, previous studies have yet to understand the causes of haze pollution events over SWC. Moreover, the associations between winter atmospheric teleconnections during drought and haze pollution event across SWC has received negligible attention and therefore warrants investigation. This study examines the associations between the atmospheric teleconnections with respect to winter droughts and winter haze pollution over SWC. Our main conclusions are as follows. (1) Winter precipitation and winter haze days (WHD) over SWC had three major fluctuations from 1959 to 2016. (2) The atmospheric circulation pattern over the Eurasian (EU) continent associated with WHD over SWC resembled that of winter droughts over SWC, where both can be characterized by an EU teleconnection pattern. The Arctic Oscillation (AO) mainly induced the atmospheric circulation pattern over the EU continent that is associated with WHD over SWC. (3) The sea surface temperature (SST) and low circulation anomalies in the Pacific and north Atlantic associated with WHD were similar to those associated with winter droughts over SWC. La Nina events and negative phases of the North Atlantic Oscillation (NAO) may induce winter drought and increase the WHD over SWC. (4) Compared with winter drought over SWC, the variation in the WHD was more complex and the factors affecting WHD were more diverse, and winter drought and its related atmospheric circulations were important factors that induced haze pollution over SWC. Overall, this study not only fills a gap in the literature with respect to the associations between the atmospheric teleconnections of winter drought and winter haze pollution over SWC, but also provides an important scientific basis for the development of potential predictions of local monthly haze pollution, which improves the forecast accuracy of local short-term haze pollution and enriches the theoretical understanding of the meteorological causes of local haze pollution. (C) 2020 Elsevier B.V. All rights reserved.
2024-04