Effect of biochar on water permeability and cracking behaviour of granite residual soil

biochar cracking geology granite residual soil recycled material water permeability
["Yao, Y","Xu, P","Yang, S","Ni, J","Wang, Y"] 2025-04-02 期刊论文
(3)
The long-term stability of compacted soil liners in landfill barriers depends on maintaining extremely low water permeability and resisting cracking induced by wet-dry cycles. This study investigated the potential of biochar as an amendment to improve the characteristics of granite residual soil, a commonly used material in barrier construction. Laboratory experiments were conducted on soil-biochar blends at different compaction levels (60% and 80%) and biochar concentrations (0%, 5%, 10%, and 20% by mass). The results showed that biochar addition gradually reduced saturated soil water permeability by up to one order of magnitude. Alterations in pore size distributions indicated a shift towards smaller diameters, suggesting the role of biochar in blocking macropores. The crack experiments demonstrated that biochar lowered surface crack ratios by 75% compared with untreated soil. Moreover, biochar affected the drying behaviour of residual granite soils, prolonging the evaporation period from 10 to 12 days and increasing the residual moisture content from 5% to 8%. In conclusion, biochar exhibited the potential to diminish soil permeability coefficients and alleviate soil cracking, providing valuable insights for enhancing the long-term performance of landfill containment barriers.
来源平台:GEOTECHNIQUE LETTERS