Precise Drought Threshold Monitoring in Winter Wheat Different Growth Periods Using a Multispectral Unmanned Aerial Vehicle

UAV multispectral YC-mapper drought level winter wheat LAI SPAD threshold
["Song, Wenlong","Liu, Hongjie","Lu, Yizhu","Lv, Juan","Gui, Rognjie","Chen, Long","Li, Mengyi","Chen, Xiuhua"] 2025-02-20 期刊论文
(3)
Agricultural drought significantly affects crop growth and food production, making accurate drought thresholds essential for effective monitoring and discrimination. This study aims to monitor the threshold ranges for different drought levels of winter wheat during three growth periods using a multispectral Unmanned Aerial Vehicle (UAV). Firstly, based on controlled field experiments, six vegetation indices were used to develop UAV optimal inversion models for the Leaf Area Index (LAI) and Soil-Plant Analysis Development (SPAD) during the jointing-heading period, heading-filling period, and filling-maturity period of winter wheat. The results show that during the three growth periods, the DVI-LAI, NDVI-LAI, and RVI-LAI models, along with the DVI-SPAD, RVI-SPAD, and TCARI-SPAD models, achieved the highest inversion accuracy. Based on the UAV-inversed LAI and SPAD indices, threshold ranges for different drought levels were determined for each period. The accuracy of LAI threshold monitoring during three periods was 92.8%, 93.6%, and 90.5%, respectively, with an overall accuracy of 92.4%. For the SPAD index, the threshold monitoring accuracy during three periods was 93.1%, 93.0%, and 92%, respectively, with an overall accuracy of 92.7%. Finally, combined with yield data, this study explores UAV-based drought disaster monitoring for winter wheat. This research enriches and expands the crop drought monitoring system using a multispectral UAV. The proposed drought threshold ranges can enhance the scientific and precise monitoring of crop drought, which is highly significant for agricultural management.
来源平台:DRONES