Climate Warming Impact on Permafrost in Alaska and the Western Arctic of Canada and Arctic Infrastructure
["Gan, Thian Y","Serreze, Mark","Gan, Kai E","Zhao, Jin","Zhang, Shuyu","Zhang, Gengxi","Huang, Lingcao"]
2025-10-01
期刊论文
(5)
The Arctic has been warming much faster than the global average, known as Arctic amplification. The active layer is seasonally frozen in winter and thaws in summer. In the 2017 Arctic Boreal Vulnerability Experiment (ABoVE) airborne campaign, airborne L- and P- band synthetic aperture radar (SAR) was used to acquire a dataset of active layer thickness (ALT) and vertical soil moisture profile, at 30 m resolution for 51 swaths across the ABoVE domain. Using a thawing degree day (TDD) model, ALT=K root TDD, we estimated ALT along the ABoVE swaths employing the 2-m air temperature from ERA5. The coefficient (K) calibrated has an R2=0.9783. We also obtained an excellent fit between ALT and K root(TDD/theta) where theta is the soil moisture from ERA5 (R2=0.9719). Output based on shared-social economic pathway (SSP) climate scenarios SSP 1-2.6, SSP 2-4.5, and SSP 5-8.5 from seven global climate models (GCMs), statistically downscaled to 25-km resolution, was used to project the impacts of climate warming on ALT. Assuming ALT=K root TDD, the projections of UKESM1-0-LL GCM resulted in the largest projected ALT, up to about 0.7 m in 2080s under SSP5-8.5. Given that the mean observed ALT of the study sites is about 0.482 m, this implies that ALT will increase by 0.074 to 0.217 m (15% and 45%) in 2080s. This will have substantial impacts on Arctic infrastructure. The projected settlement Iset (cm) of 1 to 7 cm will also impact the infrastructure, especially by differential settlement due to the high spatial variability of ALT and soil moisture, given at local scale the actual thawing will partly depend on thaw sensitivity of the material and potential thaw strain, which could vary widely from location to location.
来源平台:JOURNAL OF HYDROLOGIC ENGINEERING