为了掌握大直径盾构始发段地层冻结过程中的冻胀变形规律及其对周围环境的影响特征,对上海上中路越江隧道盾构始发冻结工程地层温度、冻胀力及冻胀变形进行现场监测,获得了冻结施工过程中地层内部温度和冻胀力的演变特征,分析了地层及结构物的冻胀变形影响规律。研究结果表明:冻结范围地层全部形成冻土后才会引起地层出现明显变形,积极冻结期间以地层水平方向变形为主,而稳定冻结阶段主要表现为竖向变形;地层内部竖向变形随着埋深增加而线性增大,冻结45 d时深度为16 m处地层竖向最大变形达到88.2 mm,而对应位置地表抬升位移仅为55.4 mm;地层水平变形沿深度方向呈拱形分布,埋深为8 m位置的水平变形最大,冻结45 d时最大变形量为88.3 mm;在冻结过程中,冻结范围两侧最大地表位移达到102.6 mm,而对应位置行车轨道基础位移仅为25.9 mm,约是相应位置地表位移的1/4。地层温度变化及压缩作用会明显影响地层内部冻胀变形过程,而地层变形也会抑制冻结帷幕内部冻胀力的增长幅度。
为了研究东北高寒冻土地区灌溉渠道季节性的冻胀问题,通过模拟渠道冻胀试验,分析冻结过程中水和热的迁移规律以及混凝土渠道衬砌中的不均匀冻胀特征。结果表明,渠道开口处和底部的冻结深度基本相同,由于地面温度的重叠效应,渠底土壤含水量最大,冻结过程中产生大的冻胀力。渠道防冻工程中,从工程成本考虑,建议渠道底部保温板厚度小于开口处,坡面保温板厚度小于底部。
寒区土体的冻胀融沉特性对结构物稳定带来极大挑战,冻土冻融作用机理的研究对寒区冻融灾害预防具有极其重大的意义。文中通过质量守恒定律以及能量守恒定律建立寒区一维土柱水分场、温度场数值模型,考虑冰水相变引起土体内部应力变化以建立应力场。构建一维非饱和土柱水热力耦合模型,通过与已有研究比对以验证三场耦合数值模型的准确性。研究表明:冻结锋面随冻结时间不断下移。在冻结初期,冻结锋面下移速度较快,在冻结后期冻结速度变缓,且土柱内温度成近似线性分布趋势。土柱内水分场在冻结锋面处出现明显的S形曲线。在冻结条件下,土柱发生竖向的冻胀变形,模拟结果与已有试验数据吻合良好,验证了该模型的合理性以及准确性。
寒旱区盐渍土环境,在以水—盐—温—力多场耦合作用为内因的水盐干湿循环和盐冻融循环共同作用下,使该区域的岩土结构发生损伤破坏。因此,水—盐—温—力多场耦合作用模型研究成为了环境作用研究领域的热点和难点。为了在细观上定量描述水分、盐分在温度变化下相态变化所引起的结构内部应力应变,在宏观上确定水—盐—温—力多场耦合作用对岩土体的损伤破坏程度,在国内外研究学者对多场耦合数学模型研究成果的基础上,采用理论分析的方法,分别从水盐运移模型、水热耦合模型、水热力耦合模型、水热盐耦合模型、水热盐力(HTSM)四场耦合模型几个方面进行综述研究,建立了在水分迁移方程中考虑结晶水含量、在水盐运移方程中考虑结晶盐固—液相变所引起的溶质摩尔质量的变化、在热流运输方程中考虑结晶盐相变潜热的寒旱区盐渍土水—盐—温—力多场耦合作用模型,为寒旱区盐渍土多场耦合作用的岩土结构损伤破坏机理研究和防灾型结构设计提供理论依据。
高寒地区高速铁路路基普遍存在冻胀问题,路基冻胀变形威胁到高速铁路运行安全。本文结合东北某高速铁路路基冻胀变形案例,阐述了人工水准监测和自动化监测的应用方法、指标要求和监测要点。验证人工水准监测和自动化监测相结合的方法可以有效地对高寒地区高速铁路路基冻胀变形进行监测。
我国国土面积约53%为季节性冻土区,冻胀病害严重,而粉土冻胀敏感性较强。因此,研究粉土冻胀特性显得尤为重要。环境温度是影响土体冻胀特性的重要因素,为探求顶端冷却温度对粉土冻胀特性的影响,采用恒温箱、循环冷浴、Data Taker 80数据采集仪等组成冻胀试验装置,通过高精度温度探头和位移传感器,实时观测试样内部温度和冻胀变形,对土样进行了开敞系统条件下的冻胀试验。试验结果表明:粉土最大冻结深度随顶端冷却温度的降低而增大;土样的总冻胀量、冻胀率、总水分入流量随顶端冷却温度的升高呈线性增大;当顶端冷却温度一定时,土样距离顶端由远及进含水率先增大后减小,靠近冻结锋面处含水率增量最大。且土样各处冻后含水率分布随顶端冷却温度的降低而减小。
文中分析了我国季节冻土区高铁路基冻胀机理及规律,现有高铁路基冻胀危害以及防冻害措施,并提出未来研究面临的主要问题。
季节冻土区路基的冻胀变形影响高速列车的运行速度、行车安全。以普通级配碎石路基结构为原型,建立轨下基础热-力耦合模型和路基结构外力作用模型,通过温度场和变形场的现场监测数据、力学特性计算的文献资料验证了模型的可靠性。在此基础上建立水泥稳定碎石路基、保温强化层+级配碎石路基、保温强化层+水泥稳定碎石路基3种防冻胀路基模型,计算冻胀变形和受力特性。结果表明:保温强化层和水泥稳定碎石填料均有效减小了路基的冻胀变形,其中保温强化层+水泥稳定碎石路基的冻结深度和最大冻胀量最小,分别为0.8 m、1.585 mm;保温强化层可减小基床表层竖向应力,且弹性模量较大的水泥稳定碎石可加速竖向应力的衰减,使得基床底层承受应力减小。保温强化层+水泥稳定碎石基床表层结构可为季节冻土区高速铁路路基结构的选型提供参考。
沈丹客专穿越我国东北地区季节性冻土区,为减小路基冻胀和融沉造成的不均匀变形,设计时采用了换填路基材料、改善基床结构、设置防冻胀层、加强地表水与地下水排泄等路基防冻胀措施。通过对沈丹客专三个完整冻融周期(2012~2015年)人工观测和自动监测数据的综合分析,研究路基冻胀变形发生、发展和变化的规律。结果表明:沈丹客专路基冻胀变形的发展变化过程可划分为冻胀初始波动、冻胀快速发展、低速稳定持续发展、融沉波动、融沉稳定5个发展阶段。宜在建设期补强防冻胀设计,以更好地控制路基冻胀。
针对隧道水平冻结法施工的特点,综合考虑地层温度、地表对流等各类初始和边界条件及土体的相变潜热过程,建立隧道水平冻结温度场的数学模型。定义土体的冻胀率为瞬时体应变,考虑冻土的正交各向异性冻胀变形特征,即冻胀变形主要发生在沿热流方向(温度梯度方向),引入变形特征系数的概念,从而导出土体温度降至冻结温度后而产生的瞬时热应变分量(冻胀应变分量),并建立地层冻胀的弹塑性热力耦合数学模型。基于ABAQUS有限元软件的二次开发技术,编制冻土正交各向异性冻胀变形的用户子程序,从而提出隧道水平冻结期地层位移的热力耦合数值分析方法。将该方法应用于某浅埋大断面地铁隧道水平冻结工程中,获得地层冻结温度场和冻胀位移场的分布规律,并与现场实测结果相比较,验证数值分析方法的可靠性,同时表明地层位移分析中考虑冻土正交各向异性冻胀变形特征的必要性。