冻土主要由固、液和气三相物质构成,其中固体可以看成骨架,另外两相物质填充在孔隙中,是典型的多孔介质。寒区冻土层融沉过程中,其中的孔隙结构、矿物颗粒和含冰量等参数变化幅度较大,导热系数等热物性参数随之变化,目前在精细表征和分析研究方面存在一定不足。针对含冰冻土,采用多孔介质描述方法,考虑其相态变化特性,将其分为未冻区、融化区、固结区及已冻区;基于表征单元体(representative elementary volume, REV)方法,结合冻土物理学和传热传质学理论,构建了冻土层导热分析模型,包括微观模型和宏观分析模型;以寒区土壤冻融过程为例进行模拟计算,分析了孔隙率、含水率、含冰率以及通道构成系数等对冻土导热系数的影响规律。所建模型可为寒区冻土传热机理分析及导热特性研究提供理论基础。
冻土主要由固、液和气三相物质构成,其中固体可以看成骨架,另外两相物质填充在孔隙中,是典型的多孔介质。寒区冻土层融沉过程中,其中的孔隙结构、矿物颗粒和含冰量等参数变化幅度较大,导热系数等热物性参数随之变化,目前在精细表征和分析研究方面存在一定不足。针对含冰冻土,采用多孔介质描述方法,考虑其相态变化特性,将其分为未冻区、融化区、固结区及已冻区;基于表征单元体(representative elementary volume, REV)方法,结合冻土物理学和传热传质学理论,构建了冻土层导热分析模型,包括微观模型和宏观分析模型;以寒区土壤冻融过程为例进行模拟计算,分析了孔隙率、含水率、含冰率以及通道构成系数等对冻土导热系数的影响规律。所建模型可为寒区冻土传热机理分析及导热特性研究提供理论基础。
冻土主要由固、液和气三相物质构成,其中固体可以看成骨架,另外两相物质填充在孔隙中,是典型的多孔介质。寒区冻土层融沉过程中,其中的孔隙结构、矿物颗粒和含冰量等参数变化幅度较大,导热系数等热物性参数随之变化,目前在精细表征和分析研究方面存在一定不足。针对含冰冻土,采用多孔介质描述方法,考虑其相态变化特性,将其分为未冻区、融化区、固结区及已冻区;基于表征单元体(representative elementary volume, REV)方法,结合冻土物理学和传热传质学理论,构建了冻土层导热分析模型,包括微观模型和宏观分析模型;以寒区土壤冻融过程为例进行模拟计算,分析了孔隙率、含水率、含冰率以及通道构成系数等对冻土导热系数的影响规律。所建模型可为寒区冻土传热机理分析及导热特性研究提供理论基础。
积雪深度是估算海冰厚度重要的参数之一,目前对不同积雪深度产品精度及其可适用范围的评估研究较少,也缺乏系统性的认知。本研究选取了11种北极积雪深度产品,根据产品的不同时间范围,分为2013—2018年和2018—2019年2个评估时间段。根据上述时间段,对比分析了各产品之间的差异性,然后将这些产品与“冰桥行动”和海冰质量平衡浮标的现场观测结果进行了评估。所有产品都显示格陵兰岛和加拿大北极群岛的北部积雪深度较厚,而在东西伯利亚海、拉普捷夫海、喀拉海、巴伦支海沿线区域的积雪深度较薄,不过,部分产品在时空变化上仍存在较大差异。与“冰桥行动”的观测数据对比发现,大部分产品数据雪深都较厚, AMSR2B和IS2/CS2分别在2013—2018年和2018—2019年的评估时间段内差异较小,拟合度较好。与海冰质量平衡浮标的对比结果显示,绝大部分产品数据雪深都较薄,并且差异性较大,其中NESOSIM在整个时期拟合度较好。利用不同产品的积雪深度反演海冰厚度的结果差异显著,与“冰桥行动”观测的海冰厚度对比发现, FY3B/MWRI和IS2/CS2分别在2013—2018年和2018—2019年的评估时间段...
积雪深度是估算海冰厚度重要的参数之一,目前对不同积雪深度产品精度及其可适用范围的评估研究较少,也缺乏系统性的认知。本研究选取了11种北极积雪深度产品,根据产品的不同时间范围,分为2013—2018年和2018—2019年2个评估时间段。根据上述时间段,对比分析了各产品之间的差异性,然后将这些产品与“冰桥行动”和海冰质量平衡浮标的现场观测结果进行了评估。所有产品都显示格陵兰岛和加拿大北极群岛的北部积雪深度较厚,而在东西伯利亚海、拉普捷夫海、喀拉海、巴伦支海沿线区域的积雪深度较薄,不过,部分产品在时空变化上仍存在较大差异。与“冰桥行动”的观测数据对比发现,大部分产品数据雪深都较厚, AMSR2B和IS2/CS2分别在2013—2018年和2018—2019年的评估时间段内差异较小,拟合度较好。与海冰质量平衡浮标的对比结果显示,绝大部分产品数据雪深都较薄,并且差异性较大,其中NESOSIM在整个时期拟合度较好。利用不同产品的积雪深度反演海冰厚度的结果差异显著,与“冰桥行动”观测的海冰厚度对比发现, FY3B/MWRI和IS2/CS2分别在2013—2018年和2018—2019年的评估时间段...
积雪深度是估算海冰厚度重要的参数之一,目前对不同积雪深度产品精度及其可适用范围的评估研究较少,也缺乏系统性的认知。本研究选取了11种北极积雪深度产品,根据产品的不同时间范围,分为2013—2018年和2018—2019年2个评估时间段。根据上述时间段,对比分析了各产品之间的差异性,然后将这些产品与“冰桥行动”和海冰质量平衡浮标的现场观测结果进行了评估。所有产品都显示格陵兰岛和加拿大北极群岛的北部积雪深度较厚,而在东西伯利亚海、拉普捷夫海、喀拉海、巴伦支海沿线区域的积雪深度较薄,不过,部分产品在时空变化上仍存在较大差异。与“冰桥行动”的观测数据对比发现,大部分产品数据雪深都较厚, AMSR2B和IS2/CS2分别在2013—2018年和2018—2019年的评估时间段内差异较小,拟合度较好。与海冰质量平衡浮标的对比结果显示,绝大部分产品数据雪深都较薄,并且差异性较大,其中NESOSIM在整个时期拟合度较好。利用不同产品的积雪深度反演海冰厚度的结果差异显著,与“冰桥行动”观测的海冰厚度对比发现, FY3B/MWRI和IS2/CS2分别在2013—2018年和2018—2019年的评估时间段...
为掌握拱形屋面积雪分布情况,降低其风雪灾害,通过对积雪现场进行调查,根据积雪实际分布与灾害情况,利用Fluent软件,建立拱形屋面的风致积雪分析模型,考虑空气相相对速度、空气相速度、空气相相对角速度、雪密度等影响因素,模拟拱形屋面风致积雪分布。通过分析,找出影响屋面积雪沉积的主要因素,建立风雪效用湍流模型,进而对拱形屋面积雪产生的压强统计数据开展详细分析,提出拱形屋面积雪不均匀分布系数取值的建议,以弥补我国现行规范对积雪均匀分布系数取值考虑较充分,对不均匀分布系数取值考虑不足的情况。
为掌握拱形屋面积雪分布情况,降低其风雪灾害,通过对积雪现场进行调查,根据积雪实际分布与灾害情况,利用Fluent软件,建立拱形屋面的风致积雪分析模型,考虑空气相相对速度、空气相速度、空气相相对角速度、雪密度等影响因素,模拟拱形屋面风致积雪分布。通过分析,找出影响屋面积雪沉积的主要因素,建立风雪效用湍流模型,进而对拱形屋面积雪产生的压强统计数据开展详细分析,提出拱形屋面积雪不均匀分布系数取值的建议,以弥补我国现行规范对积雪均匀分布系数取值考虑较充分,对不均匀分布系数取值考虑不足的情况。
为掌握拱形屋面积雪分布情况,降低其风雪灾害,通过对积雪现场进行调查,根据积雪实际分布与灾害情况,利用Fluent软件,建立拱形屋面的风致积雪分析模型,考虑空气相相对速度、空气相速度、空气相相对角速度、雪密度等影响因素,模拟拱形屋面风致积雪分布。通过分析,找出影响屋面积雪沉积的主要因素,建立风雪效用湍流模型,进而对拱形屋面积雪产生的压强统计数据开展详细分析,提出拱形屋面积雪不均匀分布系数取值的建议,以弥补我国现行规范对积雪均匀分布系数取值考虑较充分,对不均匀分布系数取值考虑不足的情况。
高速铁路对路基冻胀变形控制提出了新的要求,传统意义上的不冻胀填料的微冻胀已经不能忽略,由此产生了一系列新问题。针对季节性冻土地区路基冻胀对高速铁路平顺性的影响,基于能量最低原理,推导了微冻胀填料的冻胀计算公式,提出了高速铁路微冻胀填料控制方法和建议。同时综合分析了基床表层级配碎石关键参数,提出了严寒地区高速铁路基床表层级配碎石级配优化建议。