火星古气候和古环境的历史是研究火星宜居性的一个重要方面,而火星极地层状地层(PLD)是一个有用的档案,它记录了亚马逊纪晚期(至少过去几百万年以来)的气候变化。自20世纪60年代以来,人们开展了许多研究来解读PLD与古气候的潜在联系,其中最关注的是PLD中气候变化的周期性特征。虽然通过分析PLD的冰层辐射和形态参数揭示了火星的轨道周期,但火星轨道的变化如何驱动PLD的形成以及PLD中记录了何种气候信息尚不完全清楚。未来的研究应侧重于火星极地地区的更广泛区域,集成多个剖面进行综合研究,这有助于阐明PLD在半球尺度上的总体特征和可能的驱动机制。此外,研究人员可通过未来的火星登陆任务钻探层状地层,测量钻探样品的矿物学和地球化学成分,明确揭示PLD的形成及其蕴含的气候演化和周期性特征。
火星古气候和古环境的历史是研究火星宜居性的一个重要方面,而火星极地层状地层(PLD)是一个有用的档案,它记录了亚马逊纪晚期(至少过去几百万年以来)的气候变化。自20世纪60年代以来,人们开展了许多研究来解读PLD与古气候的潜在联系,其中最关注的是PLD中气候变化的周期性特征。虽然通过分析PLD的冰层辐射和形态参数揭示了火星的轨道周期,但火星轨道的变化如何驱动PLD的形成以及PLD中记录了何种气候信息尚不完全清楚。未来的研究应侧重于火星极地地区的更广泛区域,集成多个剖面进行综合研究,这有助于阐明PLD在半球尺度上的总体特征和可能的驱动机制。此外,研究人员可通过未来的火星登陆任务钻探层状地层,测量钻探样品的矿物学和地球化学成分,明确揭示PLD的形成及其蕴含的气候演化和周期性特征。
极地海冰覆盖区域,冰水界面波动的回复力除重力外,还需考虑冰层的弹性力,这种波动被称为水弹性波(或挠曲重力波)。与海洋表面波浪不同,水弹性波的传播特性不仅受到流体动力学控制,还显著依赖于冰层的弹性力学特征,其临界共振体系完全不同于纯重力水波,在临界速度附近表现出独特的非线性波动现象。本文针对移动载荷导致的水弹性波,系统综述了对其在理论研究、数值模拟与实验观测等方面的研究进展,重点探讨了势流模型、黏弹性效应、非线性效应以及复杂运动场景(如变速运动、三维效应、渠道边界、水下载荷等)下的冰层动力学特征,为极地资源开发、船舶航行安全、海洋超大浮体结构设计提供了重要的理论支撑和技术参考。
极地海冰覆盖区域,冰水界面波动的回复力除重力外,还需考虑冰层的弹性力,这种波动被称为水弹性波(或挠曲重力波)。与海洋表面波浪不同,水弹性波的传播特性不仅受到流体动力学控制,还显著依赖于冰层的弹性力学特征,其临界共振体系完全不同于纯重力水波,在临界速度附近表现出独特的非线性波动现象。本文针对移动载荷导致的水弹性波,系统综述了对其在理论研究、数值模拟与实验观测等方面的研究进展,重点探讨了势流模型、黏弹性效应、非线性效应以及复杂运动场景(如变速运动、三维效应、渠道边界、水下载荷等)下的冰层动力学特征,为极地资源开发、船舶航行安全、海洋超大浮体结构设计提供了重要的理论支撑和技术参考。
极地海冰覆盖区域,冰水界面波动的回复力除重力外,还需考虑冰层的弹性力,这种波动被称为水弹性波(或挠曲重力波)。与海洋表面波浪不同,水弹性波的传播特性不仅受到流体动力学控制,还显著依赖于冰层的弹性力学特征,其临界共振体系完全不同于纯重力水波,在临界速度附近表现出独特的非线性波动现象。本文针对移动载荷导致的水弹性波,系统综述了对其在理论研究、数值模拟与实验观测等方面的研究进展,重点探讨了势流模型、黏弹性效应、非线性效应以及复杂运动场景(如变速运动、三维效应、渠道边界、水下载荷等)下的冰层动力学特征,为极地资源开发、船舶航行安全、海洋超大浮体结构设计提供了重要的理论支撑和技术参考。
热水钻被认为是开展极地冰下湖探测最高效、最安全和最清洁的钻探装备。利用热水钻开展冰下湖钻探时需要建造回水腔,但目前回水腔的结构及热特性尚不清楚。为此,本文首先梳理了深层热水钻回水腔的主要结构形式。然后,以上覆冰层对冰下湖水的压力为基础,建立了回水腔建造深度计算方法,并确定了回水腔的初始形状及主要尺寸的计算方法。接着,通过建立回水腔周围冰层温度场的物理模型和数学模型,提出了回水腔临界回水温度和临界注热流量的计算方法,并系统分析了各因素对这两个参数的影响规律。研究结果表明:当深层热水钻用于冰下湖钻探时,回水腔应优先选用双层主/副孔结构,主孔和副孔之间的距离应该小于1 m,主/副孔直径应在0.3~0.6 m之间且回水腔的高度应比潜水泵大2~3 m;回水腔的建造深度主要由冰盖厚度决定,在实际工程中,回水腔的建造深度应比理论计算值大15~30 m;回水腔的临界回水温度和临界注热流量随时间的增大而减小;正常工况下,回水腔的临界回水温度不超过2~3℃,而临界注热流量不超过12 L/min。
热水钻被认为是开展极地冰下湖探测最高效、最安全和最清洁的钻探装备。利用热水钻开展冰下湖钻探时需要建造回水腔,但目前回水腔的结构及热特性尚不清楚。为此,本文首先梳理了深层热水钻回水腔的主要结构形式。然后,以上覆冰层对冰下湖水的压力为基础,建立了回水腔建造深度计算方法,并确定了回水腔的初始形状及主要尺寸的计算方法。接着,通过建立回水腔周围冰层温度场的物理模型和数学模型,提出了回水腔临界回水温度和临界注热流量的计算方法,并系统分析了各因素对这两个参数的影响规律。研究结果表明:当深层热水钻用于冰下湖钻探时,回水腔应优先选用双层主/副孔结构,主孔和副孔之间的距离应该小于1 m,主/副孔直径应在0.3~0.6 m之间且回水腔的高度应比潜水泵大2~3 m;回水腔的建造深度主要由冰盖厚度决定,在实际工程中,回水腔的建造深度应比理论计算值大15~30 m;回水腔的临界回水温度和临界注热流量随时间的增大而减小;正常工况下,回水腔的临界回水温度不超过2~3℃,而临界注热流量不超过12 L/min。
热水钻被认为是开展极地冰下湖探测最高效、最安全和最清洁的钻探装备。利用热水钻开展冰下湖钻探时需要建造回水腔,但目前回水腔的结构及热特性尚不清楚。为此,本文首先梳理了深层热水钻回水腔的主要结构形式。然后,以上覆冰层对冰下湖水的压力为基础,建立了回水腔建造深度计算方法,并确定了回水腔的初始形状及主要尺寸的计算方法。接着,通过建立回水腔周围冰层温度场的物理模型和数学模型,提出了回水腔临界回水温度和临界注热流量的计算方法,并系统分析了各因素对这两个参数的影响规律。研究结果表明:当深层热水钻用于冰下湖钻探时,回水腔应优先选用双层主/副孔结构,主孔和副孔之间的距离应该小于1 m,主/副孔直径应在0.3~0.6 m之间且回水腔的高度应比潜水泵大2~3 m;回水腔的建造深度主要由冰盖厚度决定,在实际工程中,回水腔的建造深度应比理论计算值大15~30 m;回水腔的临界回水温度和临界注热流量随时间的增大而减小;正常工况下,回水腔的临界回水温度不超过2~3℃,而临界注热流量不超过12 L/min。
为解决极地冰盖特有地形地貌、严酷自然环境和冰盖移动等导致的自动化监测装置和数据长距离传输等问题,本研究基于极地冰盖如雪丘、雪垄、冰坝、软雪、硬雪等特有地形地貌,以及气候寒冷、多狂风暴雪等特殊自然环境,针对数据长距离传输和人工智能考察作业的需求,设计了一款专用于极地的冰盖履带机器人。机器人的硬件设计以工控机和STM32F103芯片为控制核心,搭载小型综合气象观测装置、实时动态定位装置、激光雷达和深度相机获取环境信息,构建铱星9523和网桥通信系统实现远距离数据通讯。机器人的软件设计采用多任务实时调度的FreeRTOS操作系统,构建上位机和数据库。此款极地冰盖履带机器人在中国第38次南极科学考察中,依托中山站进行了现场实验。结果表明,该机器人性能稳定、通信可靠、具有较理想的控制效果且较好地满足了极地冰盖作业需求,可为我国南北极科学考察提供关键技术支撑。
为解决极地冰盖特有地形地貌、严酷自然环境和冰盖移动等导致的自动化监测装置和数据长距离传输等问题,本研究基于极地冰盖如雪丘、雪垄、冰坝、软雪、硬雪等特有地形地貌,以及气候寒冷、多狂风暴雪等特殊自然环境,针对数据长距离传输和人工智能考察作业的需求,设计了一款专用于极地的冰盖履带机器人。机器人的硬件设计以工控机和STM32F103芯片为控制核心,搭载小型综合气象观测装置、实时动态定位装置、激光雷达和深度相机获取环境信息,构建铱星9523和网桥通信系统实现远距离数据通讯。机器人的软件设计采用多任务实时调度的FreeRTOS操作系统,构建上位机和数据库。此款极地冰盖履带机器人在中国第38次南极科学考察中,依托中山站进行了现场实验。结果表明,该机器人性能稳定、通信可靠、具有较理想的控制效果且较好地满足了极地冰盖作业需求,可为我国南北极科学考察提供关键技术支撑。