Tropical cyclone (TC) Amphan is analyzed in terms of the various factors that governed the intensification process associated with it and compared with Fani. Furthermore, the TC radial characteristics and ocean productivity are examined. Notably, both TCs formed in the Bay of Bengal during the pre-monsoon seasons of 2020 and 2019, respectively. For this study, both ocean and atmospheric parameters from various sources including global analyses, satellite observations, and outputs from Model for Prediction Across Scales-Atmosphere (MPAS-A) and Advanced Research Weather Research and Forecasting (WRF-ARW), are considered. The results indicate a gradual decrease in vertical wind shear during Fani. In the case of Amphan, the increase in mid-tropospheric relative humidity values is found to be substantial. The sea surface cooling after the passage of Amphan was higher than in the case of Fani. The higher sea surface temperature in the Amphan case corresponds to the lower aerosol loading (partly because of lockdown measures) than that of Fani in the pre-cyclone phase. And the decrease (increase) in aerosol loading coincides with an increase (decrease) in the direct radiative forcing at the ocean surface. The Madden-Julian Oscillation played a greater role in the cyclogenesis of Fani, but Kelvin waves offered a major support in the case of Amphan. The warmer sea surface, higher tropical cyclone heat potential, and conducive ocean and atmospheric setting together supported the further intensification of Amphan to the supercyclone stage. The difference in chlorophyll concentration showed a significant variation, with higher positive values seen in the case of Amphan implicating greater vertical mixing. The numerical modeling effort indicated superior performance of MPAS-A compared to WRF-ARW in simulating the radial parameters of the TCs.
The study of urban aerosol and its influence on radiation and meteorological regime is important due to the climate effect. Using COSMO-ART model with TERRA_URB parameterization, we estimated aerosols and their radiative and temperature response at different emission levels in Moscow. Mean urban aerosol optical depth (AOD) was about 0.029 comprising 20-30% of the total AOD. Urban black carbon mass concentration and urban PM10 accounted for 86% and 74% of their total amount, respectively. The urban AOD provided negative shortwave effective radiative forcing (ERF) of -0.9 W m(-2) at the top of the atmosphere (TOA) for weakly absorbing aerosol and positive ERF for highly absorbing aerosol. Urban canopy effects decreased surface albedo from 19.1% to 16.9%, which resulted in positive shortwave ERF at TOA, while for longwave irradiance negative ERF was observed due to additional emitting of urban heat. Air temperature at 2 m decreased independently on the ERF sign, partially compensating (up to 0.5 degrees C) for urban heat island effect (1.5 degrees C) during daytime. Mean radiative atmospheric absorption over the Moscow center in clear sky conditions reaches 4 W m(-2) due to urban AOD. The study highlights the role of urban aerosol and its radiative and temperature effects.
Quantifying the concentration of absorbing aerosol is essential for pollution tracking and calculation of atmospheric radiative forcing. To quickly obtain absorbing aerosol optical depth (AAOD) with high-resolution and high-accuracy, the gradient boosted regression trees (GBRT) method based on the joint data from Ozone Monitoring Instrument (OMI), Moderate Resolution Imaging Spectro-Radiometer (MODIS), and AErosol RObotic NETwork (AERONET) is used for TROPOspheric Monitoring Instrument (TROPOMI). Compared with the ground-based data, the correlation coefficient of the results is greater than 0.6 and the difference is generally within +/- 0.04. Compared with OMI data, the underestimation has been greatly improved. By further restricting the impact factors, three valid conclusions can be drawn: 1) the model with more spatial difference information achieves better results than the model with more temporal difference information; 2) the training dataset with a high cloud fraction (0.1-0.4) can partly improve the performance of GBRT results; and 3) when aerosol optical depth (AOD) is less than 0.3, the perform of retrieved AAODs is still good by comparing with ground-based measurements. The novel finding is expected to contribute to regional and even urban anthropogenic pollution research.
The Aerosol Optical Depth (AOD) and aerosol-induced radiative forcing trends inferred for the period 1995-2019 over the Arabian Peninsula region (APR) are extensively studied using the state-of-the-art Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) reanalysis data. We examine the long-term AOD change for five major aerosol species: Dust (DU), Sea Salt (SS), Sulfate (SU), Black Carbon (BC), and Organic Carbon (OC) over the APR. The MERRA-2 AOD comparisons with surface measurements show that it is capable to reproduce the AOD features over APR. The total AOD over the region shows a high value in JJA with the combined effect of DU and SU being major contributors. The total AOD over APR shows an increasing trend at a rate of similar to 0.05/decade. Along with an incline in DU AOD , the anthropogenic signature on total AOD also hikes contributed mainly by the SU and OC. The increase in AOD also results in a surge in aerosol-induced atmospheric forcing (ATM) with a trend of 0.13 Wm(-2) year and 0.15 Wm(-2) year during MAM and JJA respectively. Overall, the study gives a comprehensive picture of the capability of the MERRA-2 in long-term aerosol monitoring over APR, primarily situated in the dust-belt region.
This study examines uncertainties in the retrieval of the Aerosol Optical Depth (AOD) for different aerosol types, which are obtained from different satellite-borne aerosol retrieval products over North Africa, California, Germany, and India and Pakistan in the years 2007-2019. In particular, we compared the aerosol types reported as part of the AOD retrieval from MODIS/MAIAC and CALIOP, with the latter reporting richer aerosol types than the former, and from the Ozone Monitoring Instrument (OMI) and MODIS Deep Blue (DB), which retrieve aerosol products at a lower spatial resolution than MODIS/MAIAC. Whereas MODIS and OMI provide aerosol products nearly every day over of the study areas, CALIOP has only a limited surface footprint, which limits using its data products together with aerosol products from other platforms for, e.g., estimation of surface particulate matter (PM) concentrations. In general, CALIOP and MAIAC AOD showed good agreement with the AERONET AOD (r: 0.708, 0.883; RMSE: 0.317, 0.123, respectively), but both CALIOP and MAIAC AOD retrievals were overestimated (36-57%) with respect to the AERONET AOD. The aerosol type reported by CALIOP (an active sensor) and by MODIS/MAIAC (a passive sensor) were examined against aerosol types derived from a combination of satellite data products retrieved by MODIS/DB (Angstrom Exponent, AE) and OMI (Aerosols Index, AI, the aerosol absorption at the UV band). Together, the OMI-DB (AI-AE) classification, which has wide spatiotemporal cover, unlike aerosol types reported by CALIOP or derived from AERONET measurements, was examined as auxiliary data for a better interpretation of the MAIAC aerosol type classification. Our results suggest that the systematic differences we found between CALIOP and MODIS/MAIAC AOD were closely related to the reported aerosol types. Hence, accounting for the aerosol type may be useful when predicting surface PM and may allow for the improved quantification of the broader environmental impacts of aerosols, including on air pollution and haze, visibility, climate change and radiative forcing, and human health.
Atmospheric aerosols are very crucial from air pollution and health perspective as well as for regional and global climate. This paper attempts to summarize the aerosol loading and their properties such as Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA), Angstrom exponent, and Radiative forcing, over India. All the above mentioned parameters have shown significant variability with change in the site and season. From various studies it was observed that AOD is relatively higher over Northern part of India as compared to Southern and Eastern part. Generally, lower values of SSA were observed over all sites during winter and post-monsoon seasons which indicates the dominance of absorbing type aerosol during these seasons. Also the ARF within atmosphere showed comparatively higher values during November-December and lower value during August and September all over the India. The current state of knowledge about aerosol sources, interactions and their effects on environment is limited because of its complexity. Therefore, more focused research in needed to understand the aerosol's role in climatic phenomenon.
The Poland-AOD aerosol research network was established in 2011 to improve aerosol-climate interaction knowledge and provide a real-time and historical, comprehensive, and quantitative database for the aerosol optical properties distribution over Poland. The network consists of research institutions and private owners operating 10 measurement stations and an organization responsible for aerosol model transport simulations. Poland-AOD collaboration provides observations of spectral aerosol optical depth (AOD), angstrom ngstrom Exponent (AE), incoming shortwave (SW) and longwave (LW) radiation fluxes, vertical profiles of aerosol optical properties and surface aerosol scattering and absorption coefficient, as well as microphysical particle properties. Based on the radiative transfer model (RTM), the aerosol radiative forcing (ARF) and the heating rate are simulated. In addition, results from GEM-AQ and WRF-Chem models (e.g., aerosol mass mixing ratio and optical properties for several particle chemical components), and HYSPLIT back-trajectories are used to interpret the results of observation and to describe the 3D aerosol optical properties distribution. Results of Poland-AOD research indicate progressive improvement of air quality and at mospheric turbidity during the last decade. The AOD was reduced by about 0.02/10 yr (at 550 nm), which corresponds to positive trends in ARF. The estimated clear-sky ARF trend is 0.34 W/m(2)/10 yr and 0.68 W/m(2)/10 yr, respectively, at TOA and at Earth's surface. Therefore, reduction in aerosol load observed in Poland can significantly contribute to climate warming.
Absorbing aerosols mainly Black Carbon (BC) have potential effects on the hydrological cycle and climate change over the high-altitude regions particularly in South Asia. The BC measurements are sparse in high altitude locations of the world particularly over the Northern regions of Pakistan. This study investigated the diurnal/monthly variations of BC and its climatic impacts during the period of 2016-2017 over four high altitude locations, i.e., Astore, Gilgit, Sost and Skardu located in the Himalaya-Karakorum-Hindukush (HKH) mountain ranges in Northern Pakistan. The Optical Properties of Aerosols and Clouds (OPAC) model was used for the estimation of aerosol optical properties, e.g., Aerosol Optical Depth (AOD), Asymmetry Parameter (AP) and Single Scattering Albedo (SSA) using the BC number density corresponding to the BC mass concentration. Then the model derived optical properties (AOD, AP and SSA), surface reflectance, ozone and water vapor were used in Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model for the calculation of BC aerosol radiative forcing (ARF) at the Top Of Atmosphere (TOA), Surface (SUR) and within the ATMosphere (ATM). The results revealed that the mean monthly BC concentrations were maximum during November (3.05 +/- 0.7 mu g/m(3)) as well as in December (3.05 +/- 0.5 mu g/m(3)) at Gilgit and minimum during August (1.1 +/- 0.3 mu g/m(3)) at Sost. Correspondingly, the diurnal variation of BC concentrations displayed strong fluctuations, with high concentrations in the late night and early morning during November and December for Astore and Gilgit, respectively. Generally, the BC concentrations were maximum/minimum in the morning/evening during May, June, August and September at all locations. The correlation of BC with different meteorological parameters showed that the BC has positive correlation with temperature and wind speed, while negative with relative humidity and rainfall. The HYSPLIT back trajectory analysis revealed that air masses arrived the study locations from both long distance (Turkmenistan, Tajikistan, Uzbekistan, Iran, Afghanistan, India, and China) and local sources. The monthly mean maximum and minimum BC ARF values at SUR (TOA) were found to be 43.7 +/- 3.0 W/m(2) (8.2 +/- 0.2 W/m(2)) and 16.4 +/- 1.0 W/m(2) (1.2 +/- 0.1 W/m(2)), respectively, giving an averaged atmospheric forcing of 35.7 +/- 2.3 W/m(2) and 15.2 +/- 1.9 W/m(2).
Changes in snow albedo (SA) on the Limari, Choapa, Aconcagua and Maipo basins of the Central Andes of Chile (CAC) are associated with the possible deposition of light-absorbing particles in the austral spring. We correlate SA with daily data of snow cover, aerosol optical depth (AOD) and land surface temperature (LST) available from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Terra satellite between 2000 and 2016, and other derived parameters such as days after albedo (DAS) and snow precipitation (SP). We used satellite pixels with 100% snow cover to obtain monthly average value of SA, LST, AOD, DAS and SP from September to November performing multiple regression analysis. We show that in Maipo, after considering LST, AOD represents an important role in changes induced to SA. The multiple regression model illustrates that AOD increases can reduce the SA during spring months by 13.59, 0.01, 0.77 and 3.8% in Limari, Choapa, Aconcagua and Maipo, respectively. In addition, we used a numerical prediction Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), showing that the black carbon distribution and average daily AOD are associated with the SA decrease of 0.15 in the Maipo basin between September 29 and 30, 2016. The WRF-Chem output showed aerosols are transported mainly with dominating westerly winds to the Limari and Maipo basins. Our results further suggest that SA decrease due to AOD may be originated in the largest industrial and urban areas in Chile, producing a negative impact on the hydrological resource, generated in the CAC.
Radiative forcing by particulate matter (PM2.5) has been estimated for a period of one year (January-December 2015) over Delhi and Pune (polluted urban metro cities in India) In situ observations of PM2.5 and black carbon (BC) over both the cities were obtained from the ground-based System of Air Quality Forecasting and Research (SAFAR) network of stations. Observations have shown that PM concentrations over Pune had a strong diurnal cycle as compared to Delhi in all the seasons. Also, comparisons of the mode values and seasonal frequency distributions (FDs) over Pune and Delhi showed that pollution levels over Delhi were consistently above National Ambient Air Quality Standards (NAAQS). The mean monthly PM2.5 values ranged from 61.5 to 162.9 over Delhi and from 17.4 to 74.05 over Pune. The BC mass contribution to PM2.5 was found to be 10% to 25% over Pune. However, the contribution of BC to PM2.5 was up to 35% over Delhi. Radiative forcing due to PM2.5 (PRF) over both the sites was estimated using the Optical Properties of Aerosols and Clouds (OPAC) model along with the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The PRF in the atmosphere was between +7.73 Wm(-2) and +14.51 Wm(-2) over Delhi and between +3.12 Wm(-2) and +12.15 Wm(-2) over Pune. Sensitivity experiments showed that the impact of the increase in the hygroscopicity of the aerosols on the PRF was overshadowed by the net changes in albedo.