Black carbon (BC) is a major short-lived climate pollutant (SLCP) with significant climate and environmentalhealth impacts. This review synthesizes critical advancements in the identification of emerging anthropogenic BC sources, updates to global warming potential (GWP) and global temperature potential (GTP) metrics, technical progress in characterization techniques, improvements in global-regional monitoring networks, emission inventory, and impact assessment methods. Notably, gas flaring, shipping, and urban waste burning have slowly emerged as dominant emission sources, especially in Asia, Eastern Europe, and Arctic regions. The updated GWP over 100 years for BC is estimated at 342 CO2-eq, compared to 658 CO2-eq in IPCC AR5. Recent CMIP6-based Earth System Models (ESMs) have improved attribution of BC's microphysics, identifying a 22 % increase in radiative forcing (RF) over hotspots like East Asia and Sub-Saharan Africa. Despite progress, challenges persist in monitoring network inter-comparability, emission inventory uncertainty, and underrepresentation of BC processes in ESMs. Future efforts could benefit from the integration of satellite data, artificial intelligence (AI)assisted methods, and harmonized protocols to improve BC assessment. Targeted mitigation strategies could avert up to four million premature deaths globally by 2030, albeit at a 17 % additional cost. These findings highlight BC's pivotal roles in near-term climate and sustainability policy.
To address the engineering problems of road subsidence and subgrade instability in aeolian soil under traffic loads, the aeolian soil was improved with rubber particles and cement. Uniaxial compression tests and Digital speckle correlation method (DSCM) were conducted on rubber particles-cement improved soil (RP-CIS) with different mixing ratios using the WDW-100 universal testing machine. The microcrack and force chain evolution in samples were analysed using PFC2D. The results showed that: (1) The incorporation of rubber particles and cement enhanced the strength of the samples. When the rubber particles content was 1% and the cement content was 5%, the uniaxial compressive strength of the RP-CIS reached its maximum. Based on the experimental results, a power function model was established to predict the uniaxial compressive strength of RP-CIS; (2) The deformation of the samples remains stable during the compaction stage, with cracks gradually developing and penetrating, eventually entering the shear failure stage; (3) The crack and failure modes simulated by PFC2D are consistent with the DSCM test. The development of microcracks and the contact force between particles during the loading are described from a microscopic perspective. The research findings provide scientific support for subgrade soil improvement and disaster prevention in subgrade engineering.
Liquefaction hazard analysis is crucial in earthquake-prone regions as it magnifies structural damage. In this study, standard penetration test (SPT) and shear wave velocity (Vs) data of Chittagong City have been used to assess the liquefaction resistance of soils using artificial neural network (ANN). For a scenario of 7.5 magnitude (Mw) earthquake in Chittagong City, estimating the liquefaction-resistance involves utilizing peak horizontal ground acceleration (PGA) values of 0.15 and 0.28 g. Then, liquefaction potential index (LPI) is determined to assess the severity of liquefaction. In most boreholes, the LPI values are generally higher, with slightly elevated values in SPT data compared to Vs data. The current study suggests that the Valley Alluvium, Beach and Dune Sand may experience extreme liquefaction with LPI values ranges from 9.55 to 55.03 and 0 to 37.17 for SPT and Vs respectively, under a PGA of 0.15 g. Furthermore, LPI values ranges from 25.55 to 71.45 and 9.55 to 54.39 for SPT and Vs correspondingly. The liquefaction hazard map can be utilized to protect public safety, infrastructure, and to create a more resilient Chittagong City.
The present study performed classification global aerosols based on particle linear depolarization ratio (PLDR) and single scattering albedo (SSA) provided from AErosol RObotic NETwork (AERONET) Version 3.0 and Level 2.0 inversion products of 171 AERONET sites located in six continents. Current methodology could distinguish effectively between dust and non-dust aerosols using PLDR and SSA. These selected sites include dominant aerosol types such as, pure dust (PD), dust dominated mixture (DDM), pollution dominated mixture (PDM), very weakly absorbing (VWA), strongly absorbing (SA), moderately absorbing(MA), and weakly absorbing (WA). Biomass-burning aerosols which are associated with black carbon are assigned as combinations of WA, MA and SA. The key important findings show the sites in the Northern African region are predominantly influenced by PD, while south Asian sites are characterized by DDM as well as mixture of dust and pollution aerosols. Urban and industrialized regions located in Europe and North American sites are characterized by VWA, WA, and MA aerosols. Tropical regions, including South America, South-east-Asia and southern African sites which prone to forest and biomass-burning, are dominated by SA aerosols. The study further examined the impacts by radiative forcing for different aerosol types. Among the aerosol types, SA and VWA contribute with the highest (30.14 +/- 8.04 Wm-2) and lowest (7.83 +/- 4.12 Wm-2) atmospheric forcing, respectively. Consequently, atmospheric heating rates are found to be highest by SA (0.85 K day-1) and lowest by VWA aerosols (0.22 Kday-1). The current study provides a comprehensive report on aerosol optical, micro-physical and radiative properties for different aerosol types across six continents.
As a critical ecological barrier in the arid and semi-arid regions of northwestern China, the spatio-temporal evolution of vegetation carbon sequestration in the Hexi Corridor is of great significance to the ecological security of this region. Based on multi-source remote sensing and meteorological data, this study integrated second-order partial correlation analysis, ridge regression, and other methods to reveal the spatio-temporal evolution patterns of Gross Primary Productivity (GPP) in the Hexi Corridor from 2003 to 2022, as well as the response characteristics of GPP to air temperature, precipitation, and Vapor Pressure Deficit (VPD). From 2003 to 2022, GPP in the Hexi Corridor showed an overall increasing trend, the spatial distribution of GPP showed a pattern of being higher in the east and lower in the west. In the central oasis region, intensive irrigation agriculture supported consistently high GPP values with sustained growth. Elevated air temperatures extended the growing season, further promoting GPP growth. Due to irrigation and sufficient soil moisture, the contributions of precipitation and VPD were relatively low. In contrast, desert and high-altitude permafrost areas, constrained by water and heat limitations, exhibited consistently low GPP values, which further declined due to climate fluctuations. In desert regions, high air temperatures intensified evaporation, suppressing GPP, while precipitation and VPD played more significant roles. This study provides a detailed analysis of the spatio-temporal change patterns of GPP in the Hexi Corridor and its response to climatic factors. In the future, the Hexi Corridor needs to adopt dual approaches of natural restoration and precise regulation, coordinate ecological security, food security, and economic development, and provide a scientific paradigm for carbon neutrality and ecological barrier construction in arid areas of Northwest China.
The development of biodegradable and recyclable food packaging materials derived from biomass is a promising solution to mitigate resource depletion and minimize ecological contamination. In this study, lignin nanoparticles (LNPs) were effectively produced from bamboo powder using an eco-friendly recyclable acid hydrotrope (RAH) strategy. A sustainable CA/LNPs nanocomposite film was then designed by incorporating these LNPs into a casein (CA) matrix. The LNPs served as nucleation templates, inducing ordered hydrogen bonding and close packing of the CA chains. The addition of 5 wt% LNPs significantly enhanced the mechanical properties of the film, with tensile strength enhanced to 21.42 MPa (219.7 % improvement) and elastic modulus rising to 354.88 MPa (220.3 % enhancement) compared to pure CA film. Notably, the resultant CA/LNPs nanocomposite film exhibited recyclable recasting characteristics, maintaining a reasonable mechanical strength even after three recasting cycles. The incorporation of LNPs also decreased the water solubility of the pure CA film from 31.65 % to 24.81 % indicating some interactions are taking place, while endowing the film with superior UV-blocking ability, achieving nearly complete absorption in the 200-400 nm range. Moreover, the inherent properties of LNPs imparted improved antibacterial and antioxidant activities to the CA/LNPs nanocomposite film. Owing to its comprehensive properties, the CA/LNPs nanocomposite film effectively extended the storage life of strawberries. A soil burial degradation test confirmed over 100 % mass loss within 45 days, highlighting excellent degradability of the films. Therefore, the simple extraction of LNPs and the easily recovery of p-TsOH provide significant promise and feasibility for extending the developed methodologies in this work to rapidly promote the produced films in fields such as degradable and packaging materials.
Understanding the mechanical behaviour of water ice-bearing lunar soil is essential for future lunar exploration and construction. This study employs discrete element method (DEM) simulations, incorporating realistic particle shapes and a flexible membrane, to investigate the effects of ice content, initial packing density, and gravitational conditions on lunar soil behaviour. Initially, we calibrated DEM model parameters by comparing triaxial tests on lunar soil without ice to physical experiments and the angle of repose simulations, validating the accuracy of our approach. Building on this, we conducted simulations on water ice-bearing lunar soil, examining stress-strain responses, shear strain, bond breakage, deviatoric fabric, and N-ring structures. DEM simulations demonstrate that increasing ice content from 0 % to 10 % elevates peak strength from 85 kPa to 240 kPa in loose samples and from 0.2 MPa to 1.62 MPa in dense samples. This strengthening aligns with microstructural stabilization evidenced by 5-ring configurations and narrowed branch vector distributions. Strain field analysis reveals greater deformation magnitudes in icy regolith, suggesting a trade-off between enhanced load-bearing capacity and reduced ductility. These quantified mechanical responses, including strength gain, structural stabilization, and strain localization, reveal the dual engineering implications of water ice in lunar soil.
Thawing permafrost alters climate not only through carbon emissions but also via energy-water feedback and atmospheric teleconnections. This review focuses on the Tibetan Plateau, where strong freeze-thaw cycles, intense radiation, and complex snow-vegetation interactions constitute non-carbon climate responses. We synthesize recent evidence that links freeze-thaw cycles, ground heat flux dynamics, and soil moisture hysteresis to latent heat feedback, monsoon modulation, and planetary wave anomalies. Across these pathways, both observational and simulation studies reveal consistent signals of feedback amplification and nonlinear threshold behavior. However, most Earth system models underrepresent these processes due to simplifications in freezethaw processes, snow-soil-vegetation coupling, and cross-seasonal memory effects. We conclude by identifying priority processes to better simulate multi-scale cryosphere-climate feedback, especially under continued climate warming in high-altitude regions.
Salinity stress is one of the most detrimental abiotic factors affecting plant development, harming vast swaths of agricultural land worldwide. Silicon is one element that is obviously crucial for the production and health of plants. With the advent of nanotechnology in agricultural sciences, the application of silicon oxide nanoparticles (SiO-NPs) presents a viable strategy to enhance sustainable crop production. The aim of this study was to assess the beneficial effects of SiO-NPs on the morpho-physio-biochemical parameters of rice (Oryza sativa L., variety: DRR Dhan 73) under both normal and saline conditions. To create salt stress during transplanting, 50 mM NaCl was injected through the soil. 200 mM SiO-NPs were sprayed on the leaves 25 days after sowing (DAS). It was evident that salt stress significantly hindered rice growth because of the reductions in shot length (41 %), root length (38 %), shot fresh mass (40 %), root fresh mass (47 %), shoot dry mass (48 %), and root dry mass (39 %), when compared to controls. Together with this growth inhibition, elevated oxidative stress markers including a 78 % increase in malondialdehyde (MDA) and a 67 % increase in hydrogen peroxide (H2O2) indicating enhanced lipid peroxidation were noted. Increasing the chlorophyll content (14 %), photosynthetic rate (11 %), protein levels, total free amino acids (TFAA; 13 %), and total soluble sugars (TSS; 11 %), all help to boost nitrogen (N; 16 %), phosphorous (P; 14 %), potassium (K; 12 %), and vital nutrients. The adverse effects of salt stress were significantly reduced by exogenous application of SiO-NPs. Additionally; SiO-NPs dramatically raised the activity of important antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT), improving the plant's ability to scavenge reactive oxygen species (ROS) and thereby lowering oxidative damage brought on by salt. This study highlights SiO-NPs' potential to develop sustainable farming practices and provides significant new insights into how they enhance plant resilience to salinity, particularly in salt-affected regions worldwide.
Mesh-free methods, such as the Smooth Particle Hydrodynamics (SPH) method, have recently been successfully developed to model the entire wetting-induced slope collapse process, such as rainfall-induced landslides, from the onset to complete failure. However, the latest SPH developments still lack an advanced unsaturated constitutive model capable of capturing complex soil behaviour responses to wetting. This limitation reduces their ability to provide detailed insights into the failure processes and to correctly capture the complex behaviours of unsaturated soils. This paper addresses this research gap by incorporating an advanced unsaturated constitutive model for clay and sand (CASM-X) into a recently proposed fully coupled seepage flow-deformation SPH framework to simulate a field-scale wetting-induced slope collapse test. The CASM-X model is based on the unified critical state constitutive model for clay and sand (CASM) and incorporates a void-dependent water retention curve and a modified suction-dependent compression index law, enabling the accurate prediction various unsaturated soil behaviours. The integration of the proposed CASM-X model in the fully coupled flow deformation SPH framework enables the successful prediction of a field-scale wetting-induced slope collapse test, providing insights into slope failure mechanisms from initiation to post-failure responses.