Black carbon (BC) is a major short-lived climate pollutant (SLCP) with significant climate and environmentalhealth impacts. This review synthesizes critical advancements in the identification of emerging anthropogenic BC sources, updates to global warming potential (GWP) and global temperature potential (GTP) metrics, technical progress in characterization techniques, improvements in global-regional monitoring networks, emission inventory, and impact assessment methods. Notably, gas flaring, shipping, and urban waste burning have slowly emerged as dominant emission sources, especially in Asia, Eastern Europe, and Arctic regions. The updated GWP over 100 years for BC is estimated at 342 CO2-eq, compared to 658 CO2-eq in IPCC AR5. Recent CMIP6-based Earth System Models (ESMs) have improved attribution of BC's microphysics, identifying a 22 % increase in radiative forcing (RF) over hotspots like East Asia and Sub-Saharan Africa. Despite progress, challenges persist in monitoring network inter-comparability, emission inventory uncertainty, and underrepresentation of BC processes in ESMs. Future efforts could benefit from the integration of satellite data, artificial intelligence (AI)assisted methods, and harmonized protocols to improve BC assessment. Targeted mitigation strategies could avert up to four million premature deaths globally by 2030, albeit at a 17 % additional cost. These findings highlight BC's pivotal roles in near-term climate and sustainability policy.
To address the engineering problems of road subsidence and subgrade instability in aeolian soil under traffic loads, the aeolian soil was improved with rubber particles and cement. Uniaxial compression tests and Digital speckle correlation method (DSCM) were conducted on rubber particles-cement improved soil (RP-CIS) with different mixing ratios using the WDW-100 universal testing machine. The microcrack and force chain evolution in samples were analysed using PFC2D. The results showed that: (1) The incorporation of rubber particles and cement enhanced the strength of the samples. When the rubber particles content was 1% and the cement content was 5%, the uniaxial compressive strength of the RP-CIS reached its maximum. Based on the experimental results, a power function model was established to predict the uniaxial compressive strength of RP-CIS; (2) The deformation of the samples remains stable during the compaction stage, with cracks gradually developing and penetrating, eventually entering the shear failure stage; (3) The crack and failure modes simulated by PFC2D are consistent with the DSCM test. The development of microcracks and the contact force between particles during the loading are described from a microscopic perspective. The research findings provide scientific support for subgrade soil improvement and disaster prevention in subgrade engineering.
Liquefaction hazard analysis is crucial in earthquake-prone regions as it magnifies structural damage. In this study, standard penetration test (SPT) and shear wave velocity (Vs) data of Chittagong City have been used to assess the liquefaction resistance of soils using artificial neural network (ANN). For a scenario of 7.5 magnitude (Mw) earthquake in Chittagong City, estimating the liquefaction-resistance involves utilizing peak horizontal ground acceleration (PGA) values of 0.15 and 0.28 g. Then, liquefaction potential index (LPI) is determined to assess the severity of liquefaction. In most boreholes, the LPI values are generally higher, with slightly elevated values in SPT data compared to Vs data. The current study suggests that the Valley Alluvium, Beach and Dune Sand may experience extreme liquefaction with LPI values ranges from 9.55 to 55.03 and 0 to 37.17 for SPT and Vs respectively, under a PGA of 0.15 g. Furthermore, LPI values ranges from 25.55 to 71.45 and 9.55 to 54.39 for SPT and Vs correspondingly. The liquefaction hazard map can be utilized to protect public safety, infrastructure, and to create a more resilient Chittagong City.
The present study performed classification global aerosols based on particle linear depolarization ratio (PLDR) and single scattering albedo (SSA) provided from AErosol RObotic NETwork (AERONET) Version 3.0 and Level 2.0 inversion products of 171 AERONET sites located in six continents. Current methodology could distinguish effectively between dust and non-dust aerosols using PLDR and SSA. These selected sites include dominant aerosol types such as, pure dust (PD), dust dominated mixture (DDM), pollution dominated mixture (PDM), very weakly absorbing (VWA), strongly absorbing (SA), moderately absorbing(MA), and weakly absorbing (WA). Biomass-burning aerosols which are associated with black carbon are assigned as combinations of WA, MA and SA. The key important findings show the sites in the Northern African region are predominantly influenced by PD, while south Asian sites are characterized by DDM as well as mixture of dust and pollution aerosols. Urban and industrialized regions located in Europe and North American sites are characterized by VWA, WA, and MA aerosols. Tropical regions, including South America, South-east-Asia and southern African sites which prone to forest and biomass-burning, are dominated by SA aerosols. The study further examined the impacts by radiative forcing for different aerosol types. Among the aerosol types, SA and VWA contribute with the highest (30.14 +/- 8.04 Wm-2) and lowest (7.83 +/- 4.12 Wm-2) atmospheric forcing, respectively. Consequently, atmospheric heating rates are found to be highest by SA (0.85 K day-1) and lowest by VWA aerosols (0.22 Kday-1). The current study provides a comprehensive report on aerosol optical, micro-physical and radiative properties for different aerosol types across six continents.
The development of biodegradable and recyclable food packaging materials derived from biomass is a promising solution to mitigate resource depletion and minimize ecological contamination. In this study, lignin nanoparticles (LNPs) were effectively produced from bamboo powder using an eco-friendly recyclable acid hydrotrope (RAH) strategy. A sustainable CA/LNPs nanocomposite film was then designed by incorporating these LNPs into a casein (CA) matrix. The LNPs served as nucleation templates, inducing ordered hydrogen bonding and close packing of the CA chains. The addition of 5 wt% LNPs significantly enhanced the mechanical properties of the film, with tensile strength enhanced to 21.42 MPa (219.7 % improvement) and elastic modulus rising to 354.88 MPa (220.3 % enhancement) compared to pure CA film. Notably, the resultant CA/LNPs nanocomposite film exhibited recyclable recasting characteristics, maintaining a reasonable mechanical strength even after three recasting cycles. The incorporation of LNPs also decreased the water solubility of the pure CA film from 31.65 % to 24.81 % indicating some interactions are taking place, while endowing the film with superior UV-blocking ability, achieving nearly complete absorption in the 200-400 nm range. Moreover, the inherent properties of LNPs imparted improved antibacterial and antioxidant activities to the CA/LNPs nanocomposite film. Owing to its comprehensive properties, the CA/LNPs nanocomposite film effectively extended the storage life of strawberries. A soil burial degradation test confirmed over 100 % mass loss within 45 days, highlighting excellent degradability of the films. Therefore, the simple extraction of LNPs and the easily recovery of p-TsOH provide significant promise and feasibility for extending the developed methodologies in this work to rapidly promote the produced films in fields such as degradable and packaging materials.
Understanding the mechanical behaviour of water ice-bearing lunar soil is essential for future lunar exploration and construction. This study employs discrete element method (DEM) simulations, incorporating realistic particle shapes and a flexible membrane, to investigate the effects of ice content, initial packing density, and gravitational conditions on lunar soil behaviour. Initially, we calibrated DEM model parameters by comparing triaxial tests on lunar soil without ice to physical experiments and the angle of repose simulations, validating the accuracy of our approach. Building on this, we conducted simulations on water ice-bearing lunar soil, examining stress-strain responses, shear strain, bond breakage, deviatoric fabric, and N-ring structures. DEM simulations demonstrate that increasing ice content from 0 % to 10 % elevates peak strength from 85 kPa to 240 kPa in loose samples and from 0.2 MPa to 1.62 MPa in dense samples. This strengthening aligns with microstructural stabilization evidenced by 5-ring configurations and narrowed branch vector distributions. Strain field analysis reveals greater deformation magnitudes in icy regolith, suggesting a trade-off between enhanced load-bearing capacity and reduced ductility. These quantified mechanical responses, including strength gain, structural stabilization, and strain localization, reveal the dual engineering implications of water ice in lunar soil.
Thawing permafrost alters climate not only through carbon emissions but also via energy-water feedback and atmospheric teleconnections. This review focuses on the Tibetan Plateau, where strong freeze-thaw cycles, intense radiation, and complex snow-vegetation interactions constitute non-carbon climate responses. We synthesize recent evidence that links freeze-thaw cycles, ground heat flux dynamics, and soil moisture hysteresis to latent heat feedback, monsoon modulation, and planetary wave anomalies. Across these pathways, both observational and simulation studies reveal consistent signals of feedback amplification and nonlinear threshold behavior. However, most Earth system models underrepresent these processes due to simplifications in freezethaw processes, snow-soil-vegetation coupling, and cross-seasonal memory effects. We conclude by identifying priority processes to better simulate multi-scale cryosphere-climate feedback, especially under continued climate warming in high-altitude regions.
Internal erosion induces alterations in the initial microstructure of soils, simultaneously affecting physical, hydraulic, and mechanical properties. The initial soil composition plays a crucial role in governing the initiation and progression of seepage-induced suffusion. This study employs the controlled variable method to develop granular soil models with varying particle size ratios, initial fine particle contents, and coarse particle shapes. Seepage suffusion simulations coupled with microstructural analyses are conducted using the CFD-DEM approach. Results demonstrate that particle size ratio, fine particle content, and coarse particle shape exert distinct influences on cumulative erosion mass, fine particle distribution, contact fabric, and mechanical redundancy at both macroscopic and microscopic scales. This numerical investigation advances the fundamental understanding of internal erosion mechanisms and informs the development of micro-mechanical constitutive models. Furthermore, for binary granular media composed of coarse and fine particles, careful control of the particle size ratio and fine content is recommended when utilizing gap-graded soils in embankment and dam construction to improve structural resilience and resistance to internal erosion.
A group of earthquakes typically consists of a mainshock followed by multiple aftershocks. Exploration of the dynamic behaviors of soil subjected to sequential earthquake loading is crucial. In this paper, a series of cyclic simple shear tests were performed on the undisturbed soft clay under different cyclic stress amplitudes and reconsolidation degrees. The equivalent seismic shear stress was calculated based on the seismic intensity and soil buried depth. Furthermore, reconsolidation was conducted at the loading interval to investigate the influence of seismic history. An empirical model for predicting the variation of the accumulative dissipated energy with the number of cycles was established. The energy dissipation principle was employed to investigate the evolution of cyclic shear strain and equivalent pore pressure. The findings suggested that as the cyclic stress amplitude increased, incremental damage caused by the aftershock loading to the soil skeleton structure became more severe. This was manifested as the progressive increase in deformation and the rapid accumulation of dissipated energy. Concurrently, the reconsolidation process reduced the extent of the energy dissipation by inhibiting misalignment and slippage among soil particles, thereby enhancing the resistance of the soft clay to subsequent dynamic loading.
Mesh-free methods, such as the Smooth Particle Hydrodynamics (SPH) method, have recently been successfully developed to model the entire wetting-induced slope collapse process, such as rainfall-induced landslides, from the onset to complete failure. However, the latest SPH developments still lack an advanced unsaturated constitutive model capable of capturing complex soil behaviour responses to wetting. This limitation reduces their ability to provide detailed insights into the failure processes and to correctly capture the complex behaviours of unsaturated soils. This paper addresses this research gap by incorporating an advanced unsaturated constitutive model for clay and sand (CASM-X) into a recently proposed fully coupled seepage flow-deformation SPH framework to simulate a field-scale wetting-induced slope collapse test. The CASM-X model is based on the unified critical state constitutive model for clay and sand (CASM) and incorporates a void-dependent water retention curve and a modified suction-dependent compression index law, enabling the accurate prediction various unsaturated soil behaviours. The integration of the proposed CASM-X model in the fully coupled flow deformation SPH framework enables the successful prediction of a field-scale wetting-induced slope collapse test, providing insights into slope failure mechanisms from initiation to post-failure responses.