共检索到 184

Char and soot represent distinct types of elemental carbon (EC) with varying sources and physicochemical properties. However, quantitative studies in sources, atmospheric processes and light-absorbing capabilities between them remain scarce, greatly limiting the understanding of EC's climatic and environmental impacts. For in-depth analysis, concentrations, mass absorption efficiency (MAE) and stable carbon isotope were analyzed based on hourly samples collected during winter 2021 in Nanjing, China. Combining measurements, atmospheric transport model and radiative transfer model were employed to quantify the discrepancies between char-EC and soot-EC. The mass concentration ratio of char-EC to soot-EC (R-C/S) was 1.4 +/- 0.6 (mean +/- standard deviation), showing significant dependence on both source types and atmospheric processes. Case studies revealed that lower R-C/S may indicate enhanced fossil fuel contributions, and/or considerable proportions from long-range transport. Char-EC exhibited a stronger light-absorbing capability than soot-EC, as MAE(char) (7.8 +/- 6.7 m(2)g(-1)) was significantly higher than MAE(soot) (5.4 +/- 3.4 m(2)g(-1))(p < 0.001). Notably, MAE(char) was three times higher than MAE(soot) in fossil fuel emissions, while both were comparable in biomass burning emissions. Furthermore, MAE(soot) increased with aging processes, whereas MAE(char) exhibited a more complex trend due to combined effects of changes in coatings and morphology. Simulations of direct radiative forcing (DRF) for five sites indicated that neglecting the char-EC/soot-EC differentiation could cause a 10 % underestimation of EC's DRF, which further limit accurate assessments of regional air pollution and climate effects. This study underscores the necessity for separate parameterization of two types of EC for pollution mitigation and climate change evaluation.

期刊论文 2025-11-01 DOI: 10.1016/j.atmosres.2025.108275 ISSN: 0169-8095

Carbonaceous aerosols play a crucial role in air pollution and radiative forcing, though their light-absorbing and isotopic characteristics remain insufficiently understood. This study analyzes optical absorption and isotopic composition in PM10 and PM2.5 particles from primary emission sources, focusing on traffic-related and solid fuel categories. We analyzed key optical properties, including the Angstrom absorption exponent (AAE), the contributions of black carbon (BC) and brown carbon (BrC) to total light absorption and the mass absorption efficiencies (MAE) of carbonaceous aerosols. AAE values were lower for traffic emission sources (0.9 to 1.3) than solid fuel emission sources (1.5 to 3), with similar values for both particle sizes. BrC contributions were more prominent at shorter wavelengths and were notably higher in solid fuel emission sources (61% to 88%) than in traffic emission sources (8% to 40%) at 405 nm. MAE values of BC at 405 nm were 2 to 20 times higher than BrC across different emissions. Particle size significantly affect MAE(BC) with PM2.5 higher when compared to PM10. Emissions from diesel concentrate mixer and raw coal burning exhibited the highest MAE(BC) for PM2.5 and PM10, respectively. Conversely, Coke had the lowest MAE(BC) but the highest MAE(BrC) for both sizes. Traffic emissions showed more stable carbon isotope ratios (delta C-13) enrichment (-29 parts per thousand to -24 parts per thousand) than solid fuels (-31 parts per thousand to -20 parts per thousand). delta C-13 of solid fuel combustion, unlike traffic sources, is found to be independent of size variation. These findings underscore the importance of source and size-specific aerosol characterization for unregulated emission sources.

期刊论文 2025-10-01 DOI: 10.1016/j.envpol.2025.126558 ISSN: 0269-7491

In the northwestern saline soils and coastal areas, cement soil (CS) materials are inevitably subjected to various factors including salt erosion, dry-wet cycle (DWC), temperature fluctuations and dynamic loading during its service life, which the coupling effect of these unfavourable factors seriously threatened the durability and engineering reliability of CS materials. Additionally, combined with the substantially extensive application prospects of rubber cementitious material, as a resource-efficient civil engineering material and fibre-reinforced composites, consequently, in order to address aforementioned issues, this investigation proposed to consider the incorporation of rubber particles composite basalt fiber (BF) to CS materials as an innovative engineering solution to effectively enhance the mechanical and durability properties of CS materials for prolonging its service life. In this study, sulphate ions were utilized to simulate external erosive environment and basalt fibre rubber cement soil (BFRCS) specimens were subjected to various DWC numbers (0, 1, 4, 7, 11 and 15) in diverse concentrations (0 g/L, 6 g/L and 18 g/L) of Na2SO4 solution, and specimens that had completed the corresponding DWC number were then conducted both unconfined and dynamic compressive strength tests simultaneously to analyze static and dynamic stress-strain curves, static and dynamic compressive strength, apparent morphological deterioration characteristics and energy absorption properties of BFRCS specimens. Furthermore, further qualitative and quantitative damage assessments of pore distribution and microscopic morphology of BFRCS specimens under various DWC sulphate erosion environments were carried out from the fine and microscopic perspectives through pore structure test and scanning electron microscopy (SEM) test, respectively. The test results indicated that the static, dynamic compressive strength and specific energy absorption (SEA) of BFRCS specimens exhibited a slight increase followed by a progressive decline as DWC number increased. Additionally, compared to 4 mm BFRCS specimens, those with 0.106 mm rubber particle size demonstrated more favorable resistance to DWC sulphate erosion. The air content, bubble spacing coefficient and average bubble chord length of BFRCS specimens all progressively grew as DWC number increased, while the specific surface area of pores gradually decreased. The effective combination of BF with CS matrix significantly diminished pores and weak areas within specimen, and its synergistic interaction with rubber particles efficiently mitigated the stresses associated with expansive, contraction, crystallization and osmosis subjected by specimen. Simultaneously, more ettringite (AFt) had been observed within BFRCS specimens in 18 g/L sulphate erosive environments. These findings will facilitate the design and construction of CS subgrade engineering in northwestern saline soils and coastal regions, promoting sustainable and durable solutions while reducing the detrimental environmental impact of waste rubber.

期刊论文 2025-08-15 DOI: 10.1016/j.conbuildmat.2025.142083 ISSN: 0950-0618

The brick walls of ancient buildings have got a lot of tiny and closely connected pores inside, so they can soak up water really well. This can easily cause problems like getting powdery and having efflorescence. To stop water from spoiling the grey bricks, this paper focuses on the brick walls of historical buildings in Kaifeng City. Based on our investigation, we study the distribution features of the problems. This paper tells about using the method of negative pressure infiltration to change the grey bricks. We measure all kinds of basic indicators and analyze how different ratios of modifiers affect the water properties and dry-wet cycle tests of the grey bricks. We look at the changes in the inside shape through SEM to show how it changes the grey bricks of ancient buildings. Second, we improve the wet walls by using a way that combines blocking and drainage. The main things we studied and the conclusions are like this: We use sodium methyl silicate and acrylamide polymer as modifiers to soak the historical grey bricks under negative pressure. We figure out the best ratio through orthogonal experiments. We analyze things like the water vapor permeability, how long it takes for a water drop to go through, the compressive strength, the water absorption rate, and the height of water absorption of the modified bricks. The results show that the crosslinking agent and acrylamide monomer have a big influence on how high the capillary water goes up in the modified bricks. The air permeability of the modified grey bricks with acrylamide polymer goes down a bit, but it's still okay. The surface of the modified grey bricks is very hydrophobic and there are fewer pores inside. The mechanical properties of the modified grey bricks get better in different degrees. The water absorption rate and the height of capillary water absorption go down. The modified grey bricks can really cut down the erosion of water on the wall when used in real life. They can reduce salt crystallization and efflorescence caused by rising water, and so make the brick walls of historical buildings last longer. This is super important for protecting historical buildings in Kaifeng City and taking care of other similar structures. Also, by using a way that combines blocking and drainage, and putting polymer infiltration reinforcement and the ventilation of the moisture drainage pipe together, the results show that this combination can really lower the height that capillary water goes up in the brick wall. So we get a way to control how wet the wall is.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04422 ISSN: 2214-5095

The significant rise in soil salinity has had detrimental effects on global agricultural production, negatively impacting overall plant health and leading to a decline in productivity. As a protective response, plants have developed diverse regulatory mechanisms to counteract these adverse conditions. The mechanisms help mitigate damage caused by both osmotic and ionic stress resulting from high salinity. Given the severe threat this poses to global food security and the well-being of the world's population, scientists have dedicated decades of research to understanding how to manage salt stress. Numerous mechanisms have been identified and studied to enhance plant salt tolerance and alleviate the damage caused by salt stress. This review examines recent advancements in molecular regulatory mechanisms underlying plant salt, including salt uptake and transport, salt sensing and signalling, hormonal regulation, epigenetic modifications, genetic adaptation, and posttranslational modifications. Although current knowledge has advanced our understanding, critical gaps and controversies remain, such as the stability of epigenetic memory, the trade-off between stress tolerance and growth, hormonal crosstalk, and novel genes with uncharacterised roles in salt tolerance. To resolve these questions, further research employing techniques like GWAS, transcriptomics, transgenic and genome-editing technologies, as well as studies on energy allocation and hormonal regulation, is essential. A deeper exploration of these complex, synergistic mechanisms will pave the way for enhancing plant resilience and ensuring adaptation to increasingly challenging environmental conditions.

期刊论文 2025-07-01 DOI: 10.1111/pce.15544 ISSN: 0140-7791

The extensive utilization of agricultural machinery in China has made it a prominent contributor to particulate matter (PM). However, there still exist significant knowledge gaps in understanding optical characteristics and molecular composition of chromophores of brown carbon (BrC) in PM emitted from agricultural machinery. Therefore, BrC in PM from six typical agricultural machines in China were measured to investigate the light absorption, chromophore characteristics, and influencing factors. Results showed that the average emission factors of methanol-soluble organic carbon (MSOC) and water-soluble organic carbon (WSOC) were 0.96 and 0.21 g (kg fuel)-1, respectively, exhibiting clear decreasing trends with increasing engine power and improving emission standards. Despite the light absorption coefficient of methanol-extracted BrC (Abs365,M) being approximately 2.2 times higher than that of water (Abs365,W), mass absorption efficiency of water-extracted BrC (MAE365,W) exhibited significantly greater values than MAE365,M. Among the detected chromophores, nitro-aromatic compounds (NACs) exhibited the highest contribution to light absorption that was about 14.5 times more than to total light absorption compared to their mass contributions to MSOC (0.04%), followed by polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs). Besides, the average integrated simple forcing efficiency values were estimated to be 1.5 W g-1 for MSOC and 3.7 W g-1 for WSOC, indicating significant radiative forcing absorption of agricultural machinery. The findings in this study not only provide fundamental data for climate impact estimation of but also propose effective strategies to mitigate BrC emissions, such as enhancing emission standards and promoting the adoption of high-power agricultural machinery.

期刊论文 2025-06-16 DOI: 10.1029/2024JD043233 ISSN: 2169-897X

Distinguishing the origin of lunar water ice requires in situ isotopic measurements with high sensitivity and robustness under extreme lunar conditions; however, challenges such as uncertain water contents and isotopic fractionation induced by regolith particles restrict isotopic analysis. Herein, we present a miniaturized tunable diode laser absorption spectrometer (TDLAS) developed as the core prototype for the Chang'E-7 Lunar Soil Water Molecule Analyzer (LSWMA). The wavelength range of the instrument is 3659.5-3662.0 cm-1, and the system integrates a Herriott cell for stable multi-isotope (H2 16O, H2 18O, H2 17O, and HD16O) detection and employs regolith samples of known isotopic experiments to quantify adsorption-induced fractionation. Performance evaluations demonstrated a dynamic water detection range of 0.01-2 wt % and isotope precision up to 1.3 parts per thousand for delta D (30.5 s), 0.77 parts per thousand for delta 18O (36 s), and 0.75 parts per thousand for delta 17O (21.5 s) with extended averaging. Repeated injections of three types of standard water revealed a volume-dependent deviation (Delta delta D up to -59.5 parts per thousand) attributed to multilayer adsorption effects, while simulated lunar soil experiments identified additional isotopic fractionation (Delta delta D up to -12.8 parts per thousand) caused by particle binding. These results validate the ability of the spectrometer to resolve subtle isotopic shifts under lunar conditions, providing critical data for distinguishing water origins and advancing future resource utilization strategies.

期刊论文 2025-06-10 DOI: 10.1021/acssensors.5c01115 ISSN: 2379-3694

Local ecological materials in construction represent a fundamental step toward creating living environments that combine environmental sustainability, energy efficiency, and occupant comfort. It is part of an organizational context that encourages the adoption of these methods and processes. This study aims to improve the use of locally available materials, particularly soil and agricultural residues, in the Errachidia region (southeastern Morocco). In particular, date palm waste fiber, a widely available agrarian by-product, was incorporated into the soil to develop six different types of stabilized earth bricks with fiber contents of 0 %, 1 %, 2 %, 3 %, 4 %, and 5 %. The aim was to evaluate their thermophysical, mechanical, and capillary water absorption properties. Thermal properties were determined using the highly insulated house method (PHYWE), a specific methodology for assessing thermal properties in a controlled, highly insulated environment. In addition, mechanical measurements were carried out to assess compressive and flexural strength. The results obtained showed that the addition of date palm waste fibers to brick based on soil improves the thermal resistance of the bricks. Flexural and compressive strength increased up to 3 % of fiber content, while a reduction was observed above this value. The 3 % fiber content is optimal for the stabilization of brick based on soil. Then, the increase of fiber content in bricks resulted in an increase in water absorption with a decrease in the density of the bricks. Physical and chemical characterization (XRD, FTIR, SEM, and EDX) of the soil and date palm waste fibers was carried out with geotechnical soil tests. The results obtained showed that the soil studied satisfies the minimum requirements for the production of bricks stabilized by fibers. These bricks can be considered an alternative to conventional bricks in ecological construction.

期刊论文 2025-06-01 DOI: 10.1016/j.clwas.2025.100283

Using local materials with low environmental impact is essential in building living spaces, combining energy efficiency, environmental respect, and user well-being. However, despite advances in using natural materials, few studies have focused on integrating spathe fibers into earth bricks to optimize their thermal, mechanical, and hydric performance. The study aims to develop an innovative approach to using spathe fibers as natural reinforcement in manufacturing soil bricks while analyzing their impact on thermal, mechanical, and hydric properties. Several soil bricks reinforced with spathe fibers at different concentrations (0%, 1%, 2%, 3%, 4%, and 5%) were developed. Thermal performance was assessed using the hot disk method, while mechanical strength was measured in compression and flexure with capillary absorption tests. Based on fiber content, the brick density ranged from 1719.75 to 1247.6 kg/m3. The thermal conductivity of the materials ranges from 0.621 to 0.327 W/m. K, indicating good insulating performance. Maximum capillary water absorption values range from 170 to 287%, revealing a difference in water permeability depending on fiber content. Compressive strengths range from 1.4 to 3.6 MPa, and flexural strengths range from 1.6 to 1.91 MPa, suggesting potential for structural applications. Physico-chemical and geotechnical analyses confirm the suitability of the soil for the production of spathe fiber-stabilized bricks. This study offers an alternative to conventional bricks, contributing to the promotion of ecological and sustainable building materials suitable for arid and semi-arid climates.

期刊论文 2025-06-01 DOI: 10.1007/s13762-025-06572-5 ISSN: 1735-1472

Smoky haze which occurs during large-scale wildfires essentially transforms the radiative regime of the atmosphere over large territories. The variability of shortwave radiation fluxes in a smoke-laden atmosphere is driven by variations in the optical and microphysical properties of smoke aerosols, including the spectral dependences of the imaginary part of the refractive index. These dependences are determined by the presence of black carbon, brown carbon, and radiation-selective absorbing organic compounds in aerosol particles. This study analyzes the aforementioned spectral dependences based on AERONET data during large-scale wildfires in Alaska in 2019 and Canada in 2023. The analysis includes the cases of extreme radiation absorption by black and brown carbon, where the imaginary part of the refractive index at a wavelength of 440 nm attained 0.50 and 0.27, respectively. Variations in the spectral dependence of the imaginary part of the refractive index under moderate manifestations of selective absorption of smoke aerosol during massive fires in Alaska and Canada are analyzed. Approximations for the spectral dependence of the imaginary part of the refractive index are suggested. The aerosol radiative forcing at the top of the atmosphere is estimated for the cases of extreme radiation absorption by black carbon and brown carbon in the visible and near-infrared spectral regions and of anomalous selective absorption. The results can be useful in monitoring of the radiative regime of the atmosphere and for the development of atmospheric remote sounding techniques.

期刊论文 2025-06-01 DOI: 10.1134/S1024856025700058 ISSN: 1024-8560
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共184条,19页