Carbonaceous aerosols were collected in the valley city of Baoji city in Northern China in August 2022. The light absorption characteristics and influencing factors of black carbon (BC) and brown carbon (BrC) were analyzed, and their radiative forcing was estimated. The results showed that the light absorption of secondary brown carbon [AbsBrC,sec (370)] was 7.5 +/- 2.4 Mm(-1), which was 2.5 times that of primary brown carbon [AbsBrC,pri (370), 3.0 +/- 1.2 Mm(-1)]. During the study period, the absorption Angstrom exponent (AAE) of aerosol was 1.6, indicating that there was obvious secondary aerosol formation or carbonaceous aerosol aging in the valley city of Baoji. Except for secondary BrC (BrCsec), the light absorption coefficient (Abs) and mass absorption efficiency (MAE) of BC and primary BrC (BrCpri) during the persistent high temperature period (PHT) were higher than those during the normal temperature period (NT) and the precipitation period (PP), which indicated that the light absorption capacity of black carbon and primary brown carbon increased, while the light absorption capacity of secondary brown carbon decreased under persistent high temperature period. Secondary aerosols sulfide (SO42-), nitrate (NO3-) and secondary organic carbon (SOC) are important factors for promoting the light absorption enhancemen of BC and BrCpri and photobleaching of BrCsec during persistent high temperature period. The Principal Component Analysis-Multiple Linear Regression (PCA-MLR) model showed that traffic emissions was the most important source of pollution in Baoji City. Based on this, the secondary source accelerates the aging of BC and BrC, causing changes in light absorption. During PHT, the radiative forcing of BC and BrCpri were enhanced, while the radiative forcing of BrCsec was weakened, but the positive radiative forcing generated by them may aggravate the high-temperature disaster.
2024-06-10 Web of ScienceKnowledge of aerosol radiative effects in the Tibetan Plateau (TP) is limited due to the lack of reliable aerosol optical properties, especially the single scattering albedo (SSA). We firstly reported in situ measurement of SSA in Lhasa using a cavity enhanced albedometer (CEA) at lambda = 532 nm from 22nd May to 11th June 2021. Unexpected strong aerosol absorbing ability was observed with an average SSA of 0.69. Based on spectral absorptions measured by Aethalometer (AE33), black carbon (BC) was found to be the dominated absorbing species, accounting for about 83% at lambda = 370 nm, followed by primary and secondary brown carbon (BrCpri and BrCsec). The average direct aerosol radiative forcing at the top of atmosphere (DARFTOA) was 2.83 W/m2, indicating aerosol warming effect on the Earth-atmosphere system. Even though aerosol loading is low, aerosol heating effect plays a significant role on TP warming due to strong absorbing ability. The Tibetan Plateau (TP) has experienced rapid warming over the past decades, but the key factors affecting TP climate change haven't yet been clearly understood. Aerosol single scattering albedo (SSA) is a key optical parameter determining aerosol warming or cooling effect; however, reliable SSA measurement is scarce in TP. This study firstly reported in situ measurement of SSA in Lhasa and explored the direct radiative effect of aerosol on TP warming. Strong aerosol absorption, mainly contributed by black carbon (BC), was observed with an average SSA value of 0.69 in this city. Besides Lhasa, other sites over TP were also reported with low SSA (<= 0.77) from surface measurement. The strong aerosol absorption could cause heating effect on the Earth-atmosphere system. To relieve TP warming, reasonable pollutant emission control strategies should be taken urgently to weaken aerosol absorbing ability. Unexpected low aerosol single scattering albedo was observed in Lhasa via in situ measurement of multiple optical parameters simultaneously Black carbon was the dominant contributor (similar to 83%) to aerosol absorption at 370 nm, followed by primary and secondary brown carbon The strong absorption in Lhasa exerted positive direct aerosol radiative forcing (warming effect) at the top of atmosphere
2024-03-28 Web of ScienceAccording to the monitoring data of the optical and microphysical characteristics of smoke aerosol at AERONET stations during forest fires in the summer of 2019 in Alaska, the anomalous selective absorption of smoke aerosol has been detected in the visible and near-infrared spectral range from 440 to 1020 nm. With anomalous selective absorption, the imaginary part of the refractive index of smoke aerosol reached 0.315 at a wavelength of 1020 nm. A power-law approximation of the spectral dependence of the imaginary part of the refractive index with an exponent from 0.26 to 2.35 is proposed. It is shown that, for anomalous selective absorption, power-law approximations of the spectral dependences of the aerosol optical extinction and absorption depths are applicable with an angstrom ngstrom exponent from 0.96 to 1.65 for the aerosol optical extinction depth and from 0.97 to -0.89 for the aerosol optical absorption depth, which reached 0.72. Single scattering albedo varied from 0.62 to 0.96. In the size distribution of smoke aerosol particles with anomalous selective absorption, the fine fraction of particles of condensation origin dominated. The similarity of the fraction of particles distinguished by anomalous selective absorption with the fraction of tar balls (TBs) detected by electron microscopy in smoke aerosol, which, apparently, arise during the condensation of terpenes and their oxygen-containing derivatives, is noted.
2023-12-01 Web of ScienceThe evolution of aerosol absorption and the contribution of absorbing species under different severities of particulate pollution are poorly understood, though absorption is key in aerosol radiative forcing. To resolve the problems, aerosol absorbing properties from low to high particulate pollution were investigated by using intensive observations of aerosol optical properties in the winter of 2019-2020 in Lanzhou, Northwest China. The aerosol scattering coefficient increased linearly with increasing particulate matter <2.5 mu m in diameter (PM2.5) and the absorption coefficient increased more rapidly under higher particulate pollution, leading to rapid decline in single scattering albedo (SSA) and sharp increase in mass absorption efficiency of PM2.5 (MAEPM(2.5)). The SSA (MAEPM(2.5)) decreased (increased) from 0.87 (0.76) in the lowest PM2.5 bin to 0.82 (1.11) in the highest PM2.5 bin. The linear relationship between the scattering coefficient and PM2.5 was attributed to decreasing aerosol hygroscopicity with increasing PM2.5. Elemental carbon (EC), fine soils (FS), and organic carbon (OC) accounted for 77.4%, 16.6%, and 6.0% of the total aerosol absorption, respectively. From low to high particulate pollution levels, the contribution of EC absorption increased from 68.3% to 80.5% while that of FS decreased from 25.5% to 13.9%. The aerosol radiative forcing efficiency was strongly correlated with SSA. Our results show a unique rapid increase in aerosol absorption under high particulate pollution during winter in Lanzhou, which is opposite to the trends observed in eastern Chinese cities, where SSA increases with increasing PM2.5.
2021-02-01 Web of ScienceKnowledge of aerosol size and composition is very important for investigating the radiative forcing impacts of aerosols, distinguishing aerosol sources, and identifying harmful particulate types in air quality monitoring. The ability to identify aerosol type synoptically would greatly contribute to the knowledge of aerosol type distribution at both regional and global scales, especially where there are no data on chemical composition. In this study, aerosol classification techniques were based on aerosol optical properties from remotely-observed data from the Ozone Monitoring Instrument (OMI) and Aerosol Robotic Network (AERONET) over Saudi Arabia for the period 2004-2016 and validated using data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). For this purpose, the OMI-based Aerosol Absorption Optical Depth (AAOD) and UltraViolet Aerosol Index (UVAI), and AERONET-based AAOD, Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Fine Mode Fraction (FMF), and Single Scattering Albedo (SSA) were obtained. Spatial analysis of the satellite-based OMI-AAOD showed the dominance of absorbing aerosols over the study area, but with high seasonal variability. The study found significant underestimation by OMI AAOD suggesting that the OMAERUV product may need improvement over bright desert surfaces such as the study area. Aerosols were classified into (i) Dust, (ii) Black Carbon (BC), and (iii) Mixed (BC and Dust) based on the relationships technique, between the aerosol absorption properties (AAE, SSA, and UVAI) and size parameters (AE and FMF). Additionally, the AE vs. UVAI and FMF vs. UVAI relationships misclassified the aerosol types over the study area, and the FMF vs. AE, FMF vs. AAE and FMF vs. SSA relationships were found to be robust. As expected, the dust aerosol type was dominant both annually and seasonally due to frequent dust storm events. Also, fine particulates such as BC and Mixed (BC and Dust) were observed, likely due to industrial activities (cement, petrochemical, fertilizer), water desalination plants, and electric energy generation. This is the first study to classify aerosol types over Saudi Arabia using several different aerosol property relationships, as well as over more than one site, and using data over a much longer time-period than previous studies. This enables classification and recognition of specific aerosol types over the Arabian Peninsula and similar desert regions.
2020-11-15 Web of ScienceEstimation of Particulate Matter (PM) concentration and aerosol absorption is very important in air quality and climate studies. To date, smoke, mineral dust and anthropogenic pollutants are the most uncertain aerosol components in their optical and microphysical properties. In this study, we retrieve the PM2.5 and Absorbing Aerosol Optical Depth (AAOD) from the Total Ozone Mapping Spectrometer (TOMS), the Moderate Resolution Imaging SpectroRadiometer (MODIS) and the Multiangle Imaging SpectroRadiameter (MISR) measurements. A global chemical transport model (GEOS-CHEM) is used to simulate the vertical profiles of PM2.5 and AAOD. We find that the 2003 heat wave has strong impact on PM2.5 across Europe and increased the average PM2.5 concentration by 18%. The aerosol species with the largest concentration increase are ammonium nitrate, black carbon and mineral dust. The Aerosol Robotic Network (AERONET) measurements have been used to validate our retrieval of AAOD. We find that there is a significant agreement between AERONET measurements and our retrievals with the correlation coefficient, slope and intercept of 0.91, 0.99 and 0.001, respectively. The absorbing aerosols can exert negative health effect, increase positive aerosol radiative forcing and contribute positive aerosol-climate feedbacks. (C) 2009 Elsevier Ltd. All rights reserved.
2009-05-01 Web of ScienceIn an effort to reduce uncertainties in the quantification of aerosol direct radiative forcing (ADRF) in the southeastern United States (US), a field column experiment was conducted to measure aerosol radiative properties and effects at Mt. Mitchell, North Carolina, and at an adjacent valley site. The experimental period was from June 1995 to mid-December 1995. The aerosol optical properties (single scattering albedo and asymmetry factor) needed to compute ADRF were obtained on the basis of a procedure involving a Mie code and a radiative transfer code in conjunction with the retrieved aerosol size distribution, aerosol optical depth, and diffuse-to-direct solar irradiance ratio. The regional values of ADRF at the surface and top of atmosphere (TOA), and atmospheric aerosol absorption are derived using the obtained aerosol optical properties as inputs to the column radiation model (CRM) of the community climate model (CCM3). The cloud-free instantaneous TOA ADRFs for highly polluted (HP), marine (M) and continental (C) air masses range from 20.3 to -24.8, 1.3 to -10.4, and 1.9 to -13.4 W m(-2), respectively. The mean cloud-free 24-h ADRFs at the TOA (at the surface) for HP, M, and C air masses are estimated to be -8 +/-4 (-33 +/- 16), -7 +/- 4 (-13 +/- 8), and -0.14 +/- 0.05 (-8 +/- 3) W m(-2), respectively. On the assumption that the fractional coverage of clouds is 0.61, the annual mean ADRFs at the TOA and the surface are -2 +/- 1, and -7 +/- 2 W m(-2), respectively. This also implies that aerosols currently heat the atmosphere over the southeastern US by 5 +/- 3 W m(-2) on annual timescales due to the aerosol absorption in the troposphere. (C) 2001 Elsevier Science Ltd. All rights reserved.
2001-08-01 Web of Science