Climate change is increasing the frequency and severity of disturbances, calling for extensive salvage logging operations. This study examines fully mechanized cut-to-length operations in the northeastern Italian Alps as a response to windthrow and bark beetle outbreaks following Storm Vaia. Using high-resolution orthophotos, logging trail extent, density, and configuration were analyzed in relation to terrain and ecological sensitivity. A total of 29 forest sites, covering a worksite area of 1078 hectares, were analyzed, with a combined trail length exceeding 700 km. Results indicate an average logging trail density of 500 m/ha, and a machine-trafficked area percentage of 22%. Terrain analysis revealed that 68% of the worksite area was below a 30% slope, facilitating machinery operations, while 32% of the site required adaptive strategies for steeper terrain. Additionally, depth-to-water maps were implemented to assess sensitive zones according to different moisture conditions, revealing that one-fifth of the trafficked zones were at higher risk of soil disturbances due to potentially high moisture levels. This study provides critical baseline data on mechanized salvage logging effects at a large scale, offering insights for future data-driven decision making for efficient planning under sustainable forest management.
Differential frost heave between fine (earthy) and coarse (gravelly) domains was monitored over 10 years (2013-2023) on a mountain-top flat ground subjected to both frequent diurnal and deep seasonal freezing. Monitoring objects include, ground heave, soil temperature down to 55 cm, soil moisture, air temperature, rainfall, and snow depth. The two domains, differing only in the presence of uppermost platy gravel about 1 cm in thickness, undergo frequent diurnal frost heave with about 1-cm-thick needle ice formation. Annual frequency and cumulative amount of frost heave are not significantly different between the two, but the fine domain is slightly more active particularly in spring when the near-surface soil at just above 0 degrees C permits rapid frost penetration. Differential heave mainly occurs as a time lag in the start and peak of heaving, on average, by about 1 h preceded at the fine domain, which tends to concentrate stones to the coarse domain. Frost heave activity shows a large interannual variation, primarily depending on the duration of snow-covered days. Frost heave activity also roughly correlates with annual mean air temperature, possibly reflecting a decrease in snowfall days.
In the context of global research in snow-affected regions, research in the Australian Alps has been steadily catching up to the more established research environments in other countries. One area that holds immense potential for growth is hydrological modelling. Future hydrological modelling could be used to support a range of management and planning issues, such as to better characterise the contribution of the Australian Alps to flows in the agriculturally important Murray-Darling Basin despite its seemingly small footprint. The lack of recent hydrological modelling work in the Australian Alps has catalysed this review, with the aim to summarise the current state and to provide future directions for hydrological modelling, based on advances in knowledge of the Australian Alps from adjacent disciplines and global developments in the field of hydrologic modelling. Future directions proffered here include moving beyond the previously applied conceptual models to more physically based models, supported by an increase in data collection in the region, and modelling efforts that consider non-stationarity of hydrological response, especially that resulting from climate change.
Fire in the Northern Alps is comparatively rare. Yet, previous human-ignited fire events in subalpine forests up to the treeline have triggered severe fire damage to vegetation and soil. Here, we investigate post-fire vegetation dynamics in the Northern Limestone Alps about 80 years after disturbance. We observed higher species richness in burned compared to unburned vegetation and clearly distinct floristic communities emerging after fire-driven forest removal, with several alpine specialist species uniquely found in the burned subalpine sites. The functional composition of vegetation was also distinct, with higher relative forb cover in burned plots. This difference was likely driven by disturbance-related environmental changes, such as increased light availability, offering safe sites for subalpine and alpine species. Due to a general lack of tree encroachment, we consider this a case of arrested succession after fire. We conclude that the recovery of fire-affected subalpine forests is modulated by complex interactions of climatic and biotic filters producing extreme site conditions, controlling the recolonization of the disturbed areas by forest species while providing safe sites for the establishment of a rich subalpine and alpine low-statured flora. The coupling of disturbance and abiotic filters makes high-elevation treeline ecotones very vulnerable to climate change.
New soils formed after glacier retreat can provide insights into the rates of soil formation in the context of accelerated warming due to climate change. Recently deglacierized terrains (since the Little Ice Age) are subject to weathering and pedogenesis, and freshly exposed sediments are prone to react readily with the environment. This study aims to determine the impact of parent material and time on soil physical and chemical properties of nine proglacial landscapes distributed in the Tropical Andes and Alps. A total of 188 soil samples were collected along chronosequences of deglacierization and from sites that differed in terms of parent material and classified following three parent material groups: (1) Granodiorite-Tonalite (GT), (2) Gneiss-Shales-Schists (GSS), and (3) Mont-Blanc Granite (MBG). We determined physical and chemical soil properties such as contents of clay, silt, sand, organic carbon, bulk density (BD), pH, extractable cation (exCa, exMg, exK), elemental composition by Xray fluorescence (Al, Si, P, S, K, Ca, Mn, Fe, Cu, Zn, As, Mo, Hg, Pb) and ICP-MS (Al, Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P, S, Zn), and mineral phase (XRD diffraction analysis). Parent material-controlled particle-size distribution, SOC, pH, available P, exCa, and exMg, whereas time since deglacierization only affected SOC and P, and exMg globally. Most of the significant differences in soil properties between parent material groups occurred within the first 17 years after deglacierization, and then we observed a homogenization between sites. While the higher SOC and P contents observed within the GT Andean sites might be due to the parent material composition leading to faster initial soil formation, we identified potential As, Cu, Mo, and Mn toxicity within those soils. Our study highlights the need to investigate further proglacial soil's buffering capacity and carbon sequestration to globally inform the conservation and management of novel proglacial ecosystems.
Black Carbon (BC), as a driver of environmental change, could significantly impact the snow by accelerating melting and decreasing albedo. Systematic documentation of BC studies is crucial for a better understanding of its spatial and temporal trends. This study reviewed the BC studies in the ice core and remote lake sediments and their sources in the northern hemisphere. The literature surveyed points to around 2.9 to 3.7 times increase of BC in the European Alps and up to a three-fold increase of BC in the Himalayan-Tibetan Plateau (HTP) after the onset of industrialization in Europe and Asia, respectively. BC concentration from Greenland ice core showed seven times increase with an interrupted trend after 1950's. South Asian emissions were dominant in the HTP along with a contribution from the Middle East, whereas Western European and local emissions were responsible for the change in BC concentration in the European Alps. In the Arctic, contributions from North America, Europe and Asia persisted. Similarly, a historical reconstruction of lake sediments records demonstrates the effects of emissions from long-range transport, sediment focusing, local anthropogenic activities, precipitation and total input of flux on the BC concentration.
This study presents data from the first years of permafrost monitoring in boreholes in the French Alps that started at the end of 2009 in the framework of the PermaFrance network. Nine boreholes are instrumented, among which six monitored permafrost temperature and active layer thickness (ALT) over >10 years. Ice-poor and cold permafrost in high-elevation north-facing rock walls has warmed by up to >1(degrees)C at 10 m depth over the reference decade (2011-2020), whereas ice-rich permafrost (rock glacier) temperatures remained stable. ALT has increased at four of the five boreholes for which decadal data are available. Summer 2015 marks a turning point in ALT regime and greatest ALT values were observed in 2022 (available for six boreholes), but thawing intensity did not show an obvious change. At one site with a layer of coarse blocks about 2 m thick, ALT was stable over 2018-2022 and response to the hottest years was dampened. Linear trends suggest an ALT increase of 2 m per decade for some ice-poor rock walls, independently of their thermal state. The data reveal a variety of permafrost patterns and evolution with significant intraregional and local differences. Snow modulates the response to air temperature signal in various ways, with an important effect on near-surface temperature trends and ALT: early snow melting in spring favors an ALT increase in rock walls. Maintaining these monitoring systems and understanding the physical processes controlling heterogeneous responses to climate signals is crucial to better assess permafrost dynamics and to adapt to its consequences.
BackgroundGlobal warming is affecting all cold environments, including the European Alps and Arctic regions. Here, permafrost may be considered a unique ecosystem harboring a distinct microbiome. The frequent freeze-thaw cycles occurring in permafrost-affected soils, and mainly in the seasonally active top layers, modify microbial communities and consequently ecosystem processes. Although taxonomic responses of the microbiomes in permafrost-affected soils have been widely documented, studies about how the microbial genetic potential, especially pathways involved in C and N cycling, changes between active-layer soils and permafrost soils are rare. Here, we used shotgun metagenomics to analyze the microbial and functional diversity and the metabolic potential of permafrost-affected soil collected from an alpine site (Val Lavirun, Engadin area, Switzerland) and a High Arctic site (Station Nord, Villum Research Station, Greenland). The main goal was to discover the key genes abundant in the active-layer and permafrost soils, with the purpose to highlight the potential role of the functional genes found.ResultsWe observed differences between the alpine and High Arctic sites in alpha- and beta-diversity, and in EggNOG, CAZy, and NCyc datasets. In the High Arctic site, the metagenome in permafrost soil had an overrepresentation (relative to that in active-layer soil) of genes involved in lipid transport by fatty acid desaturate and ABC transporters, i.e. genes that are useful in preventing microorganisms from freezing by increasing membrane fluidity, and genes involved in cell defense mechanisms. The majority of CAZy and NCyc genes were overrepresented in permafrost soils relative to active-layer soils in both localities, with genes involved in the degradation of carbon substrates and in the degradation of N compounds indicating high microbial activity in permafrost in response to climate warming.ConclusionsOur study on the functional characteristics of permafrost microbiomes underlines the remarkably high functional gene diversity of the High Arctic and temperate mountain permafrost, including a broad range of C- and N-cycling genes, and multiple survival and energetic metabolisms. Their metabolic versatility in using organic materials from ancient soils undergoing microbial degradation determine organic matter decomposition and greenhouse gas emissions upon permafrost thawing. Attention to their functional genes is therefore essential to predict potential soil-climate feedbacks to the future warmer climate.
In mountainous regions, global warming will likely affect the frequency and magnitude of geomorphic processes. This is also the case for rockfall, one of the most common mass movements on steep slopes. Rainfall, snowmelt, or freeze-thaw cycles are the main drivers of rockfall activity, rockfall hazards are thus generally thought to become more relevant in a context of climate change. At high elevations, unequivocal relationships have been found between increased rockfall activity, permafrost thawing and global warming. By contrast, below the permafrost limit, studies are scarcer. They mostly rely on short or incomplete rockfall records, and have so far failed to identify climatically induced trends in rockfall records. Here, using a dendrogeomorphic approach, we develop two continuous 60-year long chronologies of rockfall activity in the Vercors and Diois massifs (French Alps); both sites are located clearly below the permafrost limit. Uncertainties related to the decreasing number of trees available back in time were quantified based on a detailed mapping of trees covering the slope across time. Significant multiple regression models with reconstructed rockfalls as predictors and local changes in climatic conditions since 1959 extracted from the SAFRAN reanalysis dataset as predictants were fitted to investigate the potential impacts of global warming on rockfall activity at both sites. In the Vercors massif, the strong increase in reconstructed rockfall can be ascribed to the recolonization of the forest stand and the over-representation of young trees; changes that are observed should not therefore be ascribed to climatic fluctuations. In the Diois massif, we identify annual precipitation totals and mean temperatures as statistically significant drivers of rockfall activity but no significant increasing trend was identified in the reconstruction. All in all, despite the stringency of our approach, we cannot therefore confirm that rockfall hazard will increase as a result of global warming at our sites.
Rockfalls are one of the most common instability processes in high mountains. They represent a relevant issue, both for the risks they represent for (infra) structures and frequentation, and for their potential role as terrestrial indicators of climate change. This study aims to contribute to the growing topic of the relationship between climate change and slope instability at the basin scale. The selected study area is the Bessanese glacial basin (Western Italian Alps) which, since 2016, has been specifically equipped, monitored and investigated for this purpose. In order to provide a broader context for the interpretation of the recent rockfall events and associated climate conditions, a cross-temporal and integrated approach has been adopted. For this purpose, geomorphological investigations (last 100 years), local climate (last 30 years) and near-surface rock/air temperatures analyses, have been carried out. First research outcomes show that rockfalls occurred in two different geomorphological positions: on rock slopes in permafrost condition, facing from NW to NE and/or along the glacier margins, on rock slopes uncovered by the ice in the last decades. Seasonal thaw of the active layer and/or glacier debutressing can be deemed responsible for slope failure preparation. With regard to timing, almost all dated rock falls occurred in summer. For the July events, initiation may have been caused by a combination of rapid snow melt and enhanced seasonal thaw of the active layer due to anomalous high temperatures, and rainfall. August events are, instead, associated with a significant positive temperature anomaly on the quarterly scale, and they can be ascribed to the rapid and/or in depth thaw of the permafrost active layer. According to our findings, we can expect that in the Bessanese glacierized basin, as in similar high mountain areas, climate change will cause an increase of slope instability in the future. To fasten knowledge deepening, we highlight the need for a growth of a network of high elevation experimental sites at the basin scale, and the definition of shared methodological and measurement standards, that would allow a more rapid and effective comparison of data.