共检索到 51

Continuous permafrost is present across the McMurdo Dry Valleys of southern Victoria Land, Antarctica. While summer active-layer thaw is common in the low-elevation portions of the Dry Valleys, active layers have not significantly thickened over time. However, in some locations, coastal Antarctic permafrost has begun to warm. Here, based on soil and meteorological measurements from 1993 to 2023, we show that wintertime soil temperatures have increased across multiple sites in the Dry Valleys, at rates exceeding the pace of summer soil warming. Linear warming trends over time are significant (P < 0.05) at six of seven soil monitoring sites. Winter warming is strongly correlated with increased numbers of down-valley wind events (Foehn/katabatics), but it may also be driven by increased incident longwave radiation at some stations (although winter longwave increase is not significant over time). While down-valley wind events increase winter warming, when down-valley wind events are excluded from the record, winter soil warming remains persistent and significant, suggesting that Antarctic soils are experiencing less cold winters over time in response to regional warming. Together, these observations suggest that some Antarctic permafrost may be approaching a transition to discontinuous permafrost in some regions as winter freezing intensity is reduced over time.

2025-01-10 Web of Science

To better understand the changes in the hydrologic cycle caused by global warming in Antarctica, it is crucial to improve our understanding of the groundwater flow system, which has received less attention despite its significance. Both hydraulic and thermal properties of the active layer, through which groundwater can flow during thawing seasons, are essential to quantify the groundwater flow system. However, there has been insufficient information on the Antarctic active layer. The goal of this study was to estimate the hydraulic and thermal properties of Antarctic soils through laboratory column experiments and inverse modeling. The column experiments were conducted with sediments collected from two lakes in the Barton Peninsula, Antarctica. A sand column was also operated for comparison. Inverse modeling using HydroGeoSphere (HGS) combined with Parameter ESTimation (PEST) was performed with data collected from the column experiments, including permeameter tests, saturation -drain tests, and freeze -thaw tests. Hydraulic parameters (i.e., K s , theta s , S wr , alpha , beta, and S s ) and thermal diffusivity ( D ) of the soils were derived from water retention curves and temperature curves with depth, respectively. The hydraulic properties of the Antarctic soil samples, estimated through inverse modeling, were 1.6 x 10 - 5 -3.4 x 10 -4 cm s -1 for K s , 0.37 -0.42 for theta s , 6.62 x 10 - 3 -1.05 x 10 -2 for S wr , 0.53 -0.58 cm - 1 for alpha, 5.75 -7.96 for beta, and 5.11 x 10 - 5 -9.02 x 10 -5 cm - 1 for S s . The thermal diffusivities for the soils were estimated to be 0.65-4.64 cm 2 min -1 . The soil hydraulic and thermal properties reflected the physical and ecological characteristics of their lake environments. The results of this study can provide a basis for groundwater -surface water interaction in polar regions, which is governed by variably -saturated flow and freezethaw processes.

2024-08-10 Web of Science

The present world faces a new threat of ancient microbes and resistomes that are locked in the cryosphere and now releasing upon thawing due to climate change and anthropogenic activities. The cryosphere act as the best preserving place for these microbes and resistomes that stay alive for millions of years. Current reviews extensively discussed whether the resurrection of microbes and resistomes existing in these pristine environments is true or just a hype. Release of these ancient microorganisms and naked DNA is of great concern for society as these microbes can either cause infections directly or they can interact with contemporary microorganisms and affect their fitness, survival, and mutation rate. Moreover, the contemporary microorganisms may uptake the unlocked naked DNA, which might transform non-pathogenic microorganisms into deadly antibiotic-resistant microbes. Additionally, the resurrection of glacial microorganisms can cause adverse effects on ecosystems downstream. The release of glacial pathogens and naked DNA is real and can lead to fatal outbreaks; therefore, we must prepare ourselves for the possible reemergence of diseases caused by these microbes. This study provides a scientific base for the adoption of actions by international cooperation to develop preventive measures.

2024-06

The absence of vegetation in most ice-free areas of Antarctica makes the soil surface very sensitive to atmosphere dynamics, especially in the western sector of the Antarctic Peninsula, an area within the limits of the permafrost zone. To evaluate the possible effects of regional warming on frozen soils, we conducted an analysis of ground surface temperatures (GSTs) from 2007 to 2021 from different monitoring sites in Livingston and Deception islands (South Shetlands archipelago, Antarctica). The analysis of the interannual evolution of the GST and their daily regimes and the freezing and thawing indexes reveals that climate change is showing impacts on seasonal and perennially frozen soils. Freezing Degree Days (FDD) have decreased while Thawing Degree Day (TDD) have increased during the study period, resulting in a balance that is already positive at the sites at lower elevations. Daily freeze-thaw cycles have been rare and absent since 2014. Meanwhile, the most common thermal regimes are purely frozen - F1 (daily temperatures = +0.5 degrees C). A decrease in F1 days has been observed, while the IS and T1 days increased by about 60 days between 2007 and 2021. The annual number of days with snow cover increased between 2009 and 2014 and decreased since then. The GST and the daily thermal regimes evolution point to general heating, which may be indicative of the degradation of the frozen soils in the study area.

2024-01-15 Web of Science

Many studies have focused on elevation-dependent warming (EDW) across high mountains, but few studies have examined both EDW and LDW (latitude-dependent warming) on Antarctic warming. This study analyzed the Antarctic amplification (AnA) with respect to EDW and LDW under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 from Coupled Model Intercomparison Project Phase 6 (CMIP6) during the period 2015-2100. The results show that the AnA appears under all socioeconomic scenarios, and the greatest signal appears in austral autumn. In the future, Antarctic warming is not only elevation-dependent, but also latitude-dependent. Generally, positive EDW of mean temperature (T-mean), maximum temperature (T-max) and minimum temperature (T-min) appear in the range of 1.0-4.5 km, and the corresponding altitudinal amplification trends are 0.012/0.012/0.011 (SSP1-2.6)- 0.064/0.065/0.053 (SSP5-8.5) degrees C decade(-1)center dot km(-1). Antarctic EDW demonstrates seasonal differences, and is strong in summer and autumn and weak in winter under SSP3-7.0 and SSP5-8.5. For T(mea)n, T-max and T-min, the feature of LDW is varies in different latitude ranges, and also shows seasonal differences. The strongest LDW signal appears in autumn, and the warming rate increases with increasing latitude at 64-79 degrees S under SSP1-2.6. The similar phenomenon can be observed at 68-87 degrees S in the other cases. Moreover, the latitude component contributes more to the warming of T-mean and T-max relative to the corresponding altitude component, which may relates to the much larger range of latitude (similar to 2600 km) than altitude (similar to 4.5 km) over Antarctica, while the EDW contributes more warming than LDW in the changes in T-min in austral summer. Moreover, surface downwelling longwave radiation, water vapor and latent heat flux are the potential factors influencing Antarctic EDW, and the variation in surface downwelling longwave radiation can also be considered as an important influencing factor for Antarctic LDW. Our results provide preliminary insights into EDW and LDW in Antarctica.

2024-01

Refractory black carbon (rBC) is an important climate-forcing agent emitted by biomass burning and fossil fuel combustion. Antarctica can receive rBC aerosols emitted in Southern Hemisphere (SH) and preserve the history of emissions and atmospheric transport. Here, we present a high-resolution record of rBC in an ice core (CA2016-75) acquired from the coastal Eastern Antarctica, which accumulated during the past 100 years (1915-2015). The rBC concentration (0.030 ng g(-1)) and flux (7.22 mu g m(-2) yr(-1)) are both among the lowest values in Antarctic snow and ice. The rBC concentration reaches higher values on average in the period aligned with the austral Winter. The rBC concentrations show a long-term descending trend during the period between 1950s and mid-1990s, followed by an ascending trend to 2015. Back trajectory analysis indicates that the emissions resulting from the biomass burning and anthropogenic biofuel consumption in Southern America and Australia were the main sources for the rBC deposition. Wavelet spectral analysis and temporal correlation analysis on rBC deposition and the atmospheric circulation indices (El Nino-Southern Oscillation, Southern Annular Mode and Antarctic Oscillation) confirmed that the atmospheric circulations have certain influences on the rBC deposition, likely by their direct effects on rBC transport and on weather conditions driving the occurrence of fires and subsequent emissions in source regions.

2023-12-17

Global warming has been accelerating the frequency and intensity of climate extremes, and has had an im-mense influence on the economy and society, but attention is seldom paid to future Antarctic temperature extremes. This study investigates five surface extreme temperature indices derived from the multimodel ensemble mean (MMEM) based on 14 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) under the shared socioeconomic path-ways (SSPs) of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. In Antarctica, the variations in extreme temperature indices ex-hibit regional and seasonal differences. The diurnal temperature range (DTR) usually illustrates a downward trend, particularly for the Antarctic Peninsula and Antarctic coast, and the strongest change occurs in austral summer. In all cases, the annual highest minimum/maximum temperature (TNx/TXx) increases faster in inland Antarctica. Antarctic amplification of extreme temperature indices is detected and is strongest at the lowest maximum temperature (TXn). At the Antarctic Pen-insula, TXx amplification only appears in winter. Great DTR amplification appears along the Antarctic coast and is strongest in summer and weakest in winter. The changes in extreme temperature indices indicate the accelerated Antarctic warming in future scenarios.

2023-08

Ongoing studies conducted in northern polar regions reveal that permafrost stability plays a key role in the modern carbon cycle as it potentially stores considerable quantities of greenhouse gases. Rapid and recent warming of the Arc-tic permafrost is resulting in significant greenhouse gas emissions, both from physical and microbial processes. The po-tential impact of greenhouse gas release from the Antarctic region has not, to date, been investigated. In Antarctica, the McMurdo Dry Valleys comprise 10 % of the ice-free soil surface areas in Antarctica and like the northern polar regions are also warming albeit at a slower rate.The work presented herein examines a comprehensive sample suite of soil gas (e.g., CO2, CH4 and He) concentrations and CO2 flux measurements conducted in Taylor Valley during austral summer 2019/2020. Analytical results reveal the presence of significant concentrations of CO2, CH4 and He (up to 3.44 vol%, 18,447 ppmv and 6.49 ppmv, respec-tively) at the base of the active layer. When compared with the few previously obtained measurements, we observe increased CO2 flux rates (estimated CO2 emissions in the study area of 21.6 km2 approximate to 15 tons day-1). We suggest that the gas source is connected with the deep brines migrating from inland (potentially from beneath the Antarctic Ice Sheet) towards the coast beneath the permafrost layer. These data provide a baseline for future investigations aimed at monitoring the changing rate of greenhouse gas emissions from Antarctic permafrost, and the potential origin of gases, as the southern polar region warms.

2023-03-25 Web of Science

Variations in annual accumulated snowfall over the Antarctic ice sheet have a significant and direct impact on mean sea-level change. The interannual variability of the precipitation over coastal Antarctica adjacent to the southern Indian Ocean (SIO) cannot be totally explained by the dominant mode of atmospheric variability in the Southern Hemisphere. This study explores the possible contributions from sea surface temperature (SST) anomalies in SIO on the precipitation over East Antarctica. The results suggest that the winter precipitation in the Lambert Glacier basin (LGB) is closely related to the autumn SST variability in SIO without the influence of El Nino-Southern Oscillation. It is shown that the positive autumn SIO dipole (SIOD) of SST anomalies is usually followed by reduced precipitation in the following winter over the LGB region and vice versa. The positive (negative) autumn SIOD can persist into the winter and excite cyclonic (anticyclonic) circulation and deepen (weaken) SIO low in high latitude, corresponding to an enhanced northward (southward) wind anomaly in LGB and central SIO. This mechanism prevents (promotes) the transportation of warm and moist marine air to the LGB region and hence decreases (increases) the precipitation during the following winter.

2022-12

We assessed the potentially pathogenic fungi present in Antarctic permafrost and the overlying active layer on King George, Robert, Livingston and Deception Islands in the South Shetland Islands archipelago, maritime Antarctica. Permafrost and active layer sub-samples were incubated at 37 & DEG;C to select fungi able to grow inside the human body. A total of 67 fungal isolates were obtained, 27 from the permafrost and 40 from the active layer. These represented 18 taxa of the genera Alternaria, Aspergillus, Curvularia, Penicillium, Rhodotorula and Talaromyces. The majority of fungi detected occurred exclusively either in the permafrost or the active layer at each site. Only Aspergillus thermomutatus, Penicillium cf. chrysogenum and Rhodotorula cf. mucilaginosa were present in both permafrost and active layer samples from the same site. The yeast R. cf. mucilaginosa was recovered from both in at least two sites. The genus Penicillium was the most abundant and widely distributed genus in both permafrost and active layer samples across the sites sampled. All fungal isolates were screened using enzymatic, pH and antifungal assays to identify their virulence potential. Aspergillus hiratsukae, A. thermomutatus and R. cf. mucilaginosa, known human opportunistic fungi, were identified, displayed phospholipase, esterase, proteinase and hemolytic activities. All three also displayed the ability to grow at 40 & DEG;, 45 & DEG; and/or 50 & DEG;C and resistance to fluconazole and itraconazole; additionally, R. cf. mucilaginosa showed resistance to amphotericin B and viability after 100 d at -80 & DEG;C. A. thermomutatus UFMGCB 17415 killed the entire larvae of Tenebrio molitor in six days and R. cf. mucilaginosa UFMGCB 17448 and 17473 in three and four days, respectively. The melting of maritime Antarctic permafrost as a result of climate change may threaten the release of wild strains of pathogenic fungi geographically isolated for long time, which may in turn be transported within and beyond Antarctica by different biological and non-biological vectors. (c) 2022 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

2022-08-01 Web of Science
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 末页
  • 跳转
当前展示1-10条  共51条,6页